Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Resources (1-20 of 113)

  1. ECE 595E Lecture 23: Electronic Bandstructures

    27 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: 3D Lattice Types Full 3D Photonic Bandgap Structures Yablonovite Woodpile Inverse Opals Rod-Hole 3D PhCs

    http://nanohub.org/resources/17194

  2. PHYS 620 Lecture 5: Diamond and Zincblende Semiconductors: Band Structure

    26 Mar 2013 | Online Presentations | Contributor(s): Roberto Merlin

    http://nanohub.org/resources/16824

  3. ECE 595E Lecture 25: Further Bandstructure Simulation Tools

    21 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Wednesday Periodic Potential Lab Basic principles Input Interface Exemplary Outputs CNTbands Basic principles Input Interface Exemplary Outputs

    http://nanohub.org/resources/17308

  4. ECE 595E Lecture 21: 3D Bandstructures

    19 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Monday Bandstructure Symmetries 2D Photonic Bandstructures Periodic Dielectric Waveguides Photonic Crystal Slabs

    http://nanohub.org/resources/17193

  5. ECE 595E Lecture 24: Electronic Bandstructure Simulation Tools

    19 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Electronic bandstructure lab Basic Principles Input Interface Exemplary Outputs Density functional theory (DFT) DFT in Quantum ESPRESSO

    http://nanohub.org/resources/17307

  6. ECE 595E Lecture 22: Full 3D Bandgaps

    06 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Wednesday 3D Lattice Types Full 3D Photonic Bandgap Structures Yablonovite Woodpile Inverse Opals Rod-Hole 3D PhCs

    http://nanohub.org/resources/17195

  7. ECE 595E Lecture 20: Bandstructure Concepts

    06 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Friday Bandstructure Problem Formulation Bloch’s Theorem Reciprocal Lattice Space Numerical Solutions 1D crystal 2D triangular lattice 3D diamond...

    http://nanohub.org/resources/17192

  8. ECE 606 Lecture 3: Emergence of Bandstructure

    31 Aug 2012 | Online Presentations | Contributor(s): Gerhard Klimeck

    Table of Contents: 00:00 ECE606: Solid State Devices Lecture 3 00:24 Motivation 01:17 Time-independent Schrodinger Equation 02:22 Time-independent Schrodinger Equation 04:23 A Simple...

    http://nanohub.org/resources/15124

  9. NEMO5 Overview Presentation

    17 Jul 2012 | Online Presentations | Contributor(s): Tillmann Christoph Kubis, Michael Povolotskyi, Jean Michel D Sellier, James Fonseca, Gerhard Klimeck

    This presentation gives an overview of the current functionality of NEMO5.

    http://nanohub.org/resources/14701

  10. ECE 656 Lecture 3: Density of States

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states Example: graphene Discussion Summary

    http://nanohub.org/resources/11932

  11. ECE 656 Lecture 2: Sums in k-Space/Integrals in Energy Space

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states in k-space Example Working in energy space Discussion Summary

    http://nanohub.org/resources/11931

  12. ACUTE - Bandstructure Assignment

    07 Jul 2011 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This is assignment that is part of the ACUTE tool-based curricula that guides the students step by step how to implement an empirical pseudopotential method for the bandstructure calculation.

    http://nanohub.org/resources/11613

  13. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | Workshops | Contributor(s): Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

    http://nanohub.org/resources/11041

  14. Tutorial 4: Far-From-Equilibrium Quantum Transport

    29 Mar 2011 | Courses | Contributor(s): Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic...

    http://nanohub.org/resources/11042

  15. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Outline: Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key Insights Open 1D Systems: Transmission through Double Barrier Structures - Resonant Tunneling Introduction to RTDs:...

    http://nanohub.org/resources/11043

  16. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

    http://nanohub.org/resources/11049

  17. Tutorial 4c: Formation of Bandstructure in Finite Superlattices (Exercise Session)

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    How does bandstructure occur? How large does a repeated system have to be? How does a finite superlattice compare to an infinite superlattice?

    http://nanohub.org/resources/11051

  18. Tutorial 4d: Formation of Bandstructure in Finite Superlattices (Exercise Demo)

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Demonstration of the Piece-Wise Constant Potential Barriers Tool.

    http://nanohub.org/resources/11052

  19. Berkeley GW

    27 Sep 2009 | Tools | Contributor(s): Alexander S McLeod, Peter Doak, Sahar Sharifzadeh, Jeffrey B. Neaton

    This is an educational tool that illustrates the calculation of the electronic structure of materials using many-body perturbation theory within the GW approximation

    http://nanohub.org/resources/berkeleygw

  20. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    18 Jan 2011 | Workshops

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

    http://nanohub.org/resources/8878

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.