Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Resources (81-100 of 120)

  1. ECE 495N Lecture 20: Bandstructures III

    27 Oct 2008 | | Contributor(s):: Supriyo Datta

  2. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  3. 1D Heterostructure Tool

    04 Aug 2008 | | Contributor(s):: Arun Goud Akkala, Sebastian Steiger, Jean Michel D Sellier, Sunhee Lee, Michael Povolotskyi, Tillmann Christoph Kubis, Hong-Hyun Park, Samarth Agarwal, Gerhard Klimeck, James Fonseca, Archana Tankasala, Kuang-Chung Wang, Chin-Yi Chen, Fan Chen

    Poisson-Schrödinger Solver for 1D Heterostructures

  4. AQME - Advancing Quantum Mechanics for Engineers

    12 Aug 2008 | | Contributor(s):: Gerhard Klimeck, Xufeng Wang, Dragica Vasileska

    One-stop-shop for teaching quantum mechanics for engineers

  5. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  6. Computational Electronics HW - Bandstructure Calculation

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  7. Energy Bands as a Function of the Geometry of the n-Well Potential: an Exercise

    05 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    Explores the position and the width of the bands as a function of the 10-barrier potential parameters.NSF

  8. Tutorial on Semi-empirical Band Structure Methods

    06 Jul 2008 | | Contributor(s):: Dragica Vasileska

    This tutorial explains in details the Empirical Pseudopotential Method for the electronic structure calculation, the tight-binding method and the k.p method. For more details on the Empirical Pseudopotential Method listen to the following presentation:Empirical Pseudopotential Method Described...

  9. Periodic Potentials and the Kronig-Penney Model

    01 Jul 2008 | | Contributor(s):: Dragica Vasileska

    This material describes the derivation of the Kronig-Penney model for delta-function periodic potentials.

  10. Periodic Potentials and Bandstructure: an Exercise

    02 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the students that in the case of strong coupling between the neighboring wells in square and Coulomb periodic potential wells electrons start to behave as free electrons and the gaps that open at the Brillouin zone boundaries become smaller and smaller (thus recovering the...

  11. Computational Nanoscience, Lecture 19: Band Structure and Some In-Class Simulation: DFT for Solids

    30 Apr 2008 | | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this class we briefly review band structures and then spend most of our class on in-class simulations. Here we use the DFT for molecules and solids (Siesta) course toolkit. We cover a variety of solids, optimizing structures, testing k-point convergence, computing cohesive energies, and...

  12. The Novel Nanostructures of Carbon

    28 Feb 2008 | | Contributor(s):: Gene Dresselhaus

    A brief review will be given of the physical underpinnings of carbon nanostructures that were developed over the past 60 years, starting with the electronic structure and physical properties of graphene and graphite, and then moving to graphite intercalation compounds which contained the first...

  13. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

  14. Homework Assignment: Periodic Potentials

    31 Jan 2008 | | Contributor(s):: David K. Ferry

    Using the Periodic Potential Lab on nanoHUB determine the allowed bands for an energy barrier of 5 eV, a periodicity W = 0.5nm, and a barrier thickness of 0.1nm. How do these bands change if the barrier thickness is changed to 0.2 nm?

  15. MIT Atomic-Scale Modeling Toolkit

    15 Jan 2008 | | Contributor(s):: daniel richards, Elif Ertekin, Jeffrey C Grossman, David Strubbe, Justin Riley

    Tools for Atomic-Scale Modeling

  16. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | | Contributor(s):: Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

  17. MCW07 Impact of Porphyrin Functional Groups on InAs Gas Sensors

    05 Nov 2007 | | Contributor(s):: Michael Garcia

    Porphyrin molecules are often used for sensor engineering to improve sensitivity and selectivity to specific analytes. It is important to understand how the porphyrin HOMO-LUMO levels deplete surface states during functionalization of solid state sensors. Additionally, the effect of...

  18. Simple Photonic Crystals

    16 Aug 2007 | | Contributor(s):: Jing Ouyang, Xufeng Wang, Minghao Qi

    Photonic Crystal characteristics in an easy way

  19. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | | Contributor(s):: Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within density functional theory (DFT). While this framework has proven relatively accurate for certain...

  20. A Tutorial for Nanoelectronics Simulation Tools

    03 Jul 2007 | | Contributor(s):: James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to some of the available simulators. The simulators discussed are FETToy, nanoMOS, Schred, CNTbands, and QDot Lab. For each simulator, a brief introduction to the simulator is presented, followed by voiced presentations featuring the simulator in...