Friday morning October 31, nanoHUB tools and home directories will be unavailable from 6 AM to noon (eastern time); we're getting a new file server! All tool sessions will be lost. Also, the web site will be unavailable for about 15 minutes sometime between 8-9 AM.

Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Resources (21-40 of 113)

  1. Coupled Effect of Strain and Magnetic Field on Electronic Bandstructure of Graphene

    07 Dec 2010 | Papers | Contributor(s): yashudeep singh

    We explore the possibility of coupling between planar strain and perpendicular magnetic field on electronic bandstructure of graphene. We study uni-axially, bi-axially and shear strained graphene...

    http://nanohub.org/resources/10126

  2. ABACUS: Test for Bandstructure Lab

    10 Aug 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This is a test that examines ones understanding of electronic structure once he/she has gone through the materials and exercises provided on the nanoHUB as part of the ABACUS Bandstructure topic...

    http://nanohub.org/resources/9493

  3. Nanoelectronic Modeling Lecture 41: Full-Band and Atomistic Simulation of Realistic 40nm InAs HEMT

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Neerav Kharche, Neophytos Neophytou, Mathieu Luisier

    This presentation demonstrates the OMEN capabilities to perform a multi-scale simulation of advanced InAs-based high mobility transistors. Learning Objectives: Quantum Transport...

    http://nanohub.org/resources/9285

  4. Nanoelectronic Modeling Lecture 35: Alloy Disorder in Nanowires

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Neerav Kharche, Mathieu Luisier, Neophytos Neophytou

    This presentation discusses the consequences of Alloy Disorder in unstrained strained AlGaAs nanowires Relationship between dispersion relationship and transmission in perfectly ordered...

    http://nanohub.org/resources/9280

  5. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineering What happens when...

    http://nanohub.org/resources/9279

  6. Description of the K.P Method for Band Structure Calculation

    05 Aug 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides describes the k.p mehod for band structure calculation.

    http://nanohub.org/resources/9454

  7. Nanoelectronic Modeling Lecture 33: Alloy Disorder in Bulk

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses disorder in AlGaAs unstrained systems in bulk. Bandstructure of an ideal simple unit cell What happens when there is disorder? Concept of a...

    http://nanohub.org/resources/9278

  8. Thermoelectric Nanotechnology

    27 Jul 2010 | Online Presentations | Contributor(s): Mark Lundstrom

    his talk is an undergraduate level introduction to the field. After a brief discussion of applications, the physics of the Peltier effect is described, and the Figure of Merit (FOM), ZT,...

    http://nanohub.org/resources/9421

  9. ABACUS Exercise: Bandstructure – Kronig-Penney Model and Tight-Binding Exercise

    20 Jul 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    The objective of this exercise is to start with the simple Kronig-Penney model and understand formations of bands and gaps in the dispersion relation that describes the motion of carriers in 1D...

    http://nanohub.org/resources/9372

  10. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    07 Jul 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

    http://nanohub.org/resources/8594

  11. Band Structure Lab Exercise

    28 Jun 2010 | Teaching Materials | Contributor(s): Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska

    Investigations of the electron energy spectra of solids form one of the most active fields of research. Knowledge of band theory is essential for application to specific problems such as Gunn...

    http://nanohub.org/resources/9233

  12. Ripples and Warping of Graphene: A Theoretical Study

    08 Jun 2010 | Online Presentations | Contributor(s): Umesh V. Waghmare

    We use first-principles density functional theory based analysis to understand formation of ripples in graphene and related 2-D materials. For an infinite graphene, we show that ripples are linked...

    http://nanohub.org/resources/9010

  13. Tight-Binding Band Structure Calculation Method

    08 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This set of slides describes on simple example of a 1D lattice, the basic idea behind the Tight-Binding Method for band structure calculation.

    http://nanohub.org/resources/9122

  14. InAs: Evolution of iso-energy surfaces for heavy, light, and split-off holes due to uniaxial strain.

    25 May 2010 | Animations | Contributor(s): Abhijeet Paul, Denis Areshkin, Gerhard Klimeck

    Movie was generated using Band Structure Lab tool at nanoHUB and allows to scan over four parameters: Hole energy measured from the top of the corresponding band (i.e. the origin of energy...

    http://nanohub.org/resources/9016

  15. Band Structure Calculation: General Considerations

    17 May 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides explains to the users the concept of valence vs. core electrons, the implications of the adiabatic approximation on the separation of the total Hamiltonian of the system and the...

    http://nanohub.org/resources/9003

  16. Empirical Pseudopotential Method: Theory and Implementation

    17 May 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This tutorial first teaches the users the basic theory behind the Empirical Pseudopotential (EPM)Bandstructure Calculation method. Next, the implementation details of the method are described and...

    http://nanohub.org/resources/8999

  17. ninithi

    13 May 2010 | Downloads | Contributor(s): Chanaka Suranjith Rupasinghe, Mufthas Rasikim

    ninithi which is a free and opensource modelling software, can be used to visualize and analyze carbon allotropes used in nanotechnology. You can generate 3-D visualization of Carbon nanotubes,...

    http://nanohub.org/resources/8987

  18. Nanotechnology Animation Gallery

    22 Apr 2010 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download....

    http://nanohub.org/resources/8882

  19. Electronic band structure

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes ranges of energy in which an electron is "forbidden" or "allowed". The band structure is...

    http://nanohub.org/resources/8814

  20. Nanoelectronic Modeling Lecture 25b: NEMO1D - Hole Bandstructure in Quantum Wells and Hole Transport in RTDs

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Heterostructures such as resonant tunneling diodes, quantum well photodetectors and lasers, and cascade lasers break the symmetry of the crystalline lattice. Such break in lattice symmetry...

    http://nanohub.org/resources/8595

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.