Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

All Categories (1-20 of 123)

  1. DFT Material Properties Simulator

    21 Jul 2015 | Tools | Contributor(s): Usama Kamran, David M Guzman, Alejandro Strachan

    Compute electronic and mechanical properties of materials from DFT calculations with 1-Click

    http://nanohub.org/resources/dftmatprop

  2. Band structure error in InAs UTB devices

    Closed | Responses: 0

    Dear Sir/Madam,

    first of all, I would like to thank you to have developed and made ​​available online this tool. Currently, I’m interested in the study of the band structure of http://nanohub.org/answers/question/1328

  3. Christopher Browne

    http://nanohub.org/members/95196

  4. ECE 595E Lecture 23: Electronic Bandstructures

    27 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: 3D Lattice Types Full 3D Photonic Bandgap Structures Yablonovite Woodpile Inverse Opals Rod-Hole 3D PhCs

    http://nanohub.org/resources/17194

  5. PHYS 620 Lecture 5: Diamond and Zincblende Semiconductors: Band Structure

    26 Mar 2013 | Online Presentations | Contributor(s): Roberto Merlin

    http://nanohub.org/resources/16824

  6. ECE 595E Lecture 25: Further Bandstructure Simulation Tools

    21 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Wednesday Periodic Potential Lab Basic principles Input Interface Exemplary Outputs CNTbands Basic principles Input Interface Exemplary Outputs

    http://nanohub.org/resources/17308

  7. ECE 595E Lecture 21: 3D Bandstructures

    19 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Monday Bandstructure Symmetries 2D Photonic Bandstructures Periodic Dielectric Waveguides Photonic Crystal Slabs

    http://nanohub.org/resources/17193

  8. ECE 595E Lecture 24: Electronic Bandstructure Simulation Tools

    19 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Electronic bandstructure lab Basic Principles Input Interface Exemplary Outputs Density functional theory (DFT) DFT in Quantum ESPRESSO

    http://nanohub.org/resources/17307

  9. ECE 595E Lecture 22: Full 3D Bandgaps

    06 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Wednesday 3D Lattice Types Full 3D Photonic Bandgap Structures Yablonovite Woodpile Inverse Opals Rod-Hole 3D PhCs

    http://nanohub.org/resources/17195

  10. ECE 595E Lecture 20: Bandstructure Concepts

    06 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Friday Bandstructure Problem Formulation Bloch’s Theorem Reciprocal Lattice Space Numerical Solutions 1D crystal 2D triangular lattice 3D diamond...

    http://nanohub.org/resources/17192

  11. Debanjan Basu

    http://nanohub.org/members/78136

  12. berri morad

    http://nanohub.org/members/70498

  13. ECE 606 Lecture 3: Emergence of Bandstructure

    31 Aug 2012 | Online Presentations | Contributor(s): Gerhard Klimeck

    Table of Contents: 00:00 ECE606: Solid State Devices Lecture 3 00:24 Motivation 01:17 Time-independent Schrodinger Equation 02:22 Time-independent Schrodinger Equation 04:23 A Simple...

    http://nanohub.org/resources/15124

  14. NEMO5 Overview Presentation

    17 Jul 2012 | Online Presentations | Contributor(s): Tillmann Christoph Kubis, Michael Povolotskyi, Jean Michel D Sellier, James Fonseca, Gerhard Klimeck

    This presentation gives an overview of the current functionality of NEMO5.

    http://nanohub.org/resources/14701

  15. Learning Module: Bonding and Band Structure in Silicon

    The main goal of this learning module is to help students learn about the correlation between atomic structure and electronic properties, and help them develop a more intuitive understanding of...

    http://nanohub.org/wiki/LearningModuleSiliconBandstructureDFT

  16. ECE 656 Lecture 3: Density of States

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states Example: graphene Discussion Summary

    http://nanohub.org/resources/11932

  17. ECE 656 Lecture 2: Sums in k-Space/Integrals in Energy Space

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states in k-space Example Working in energy space Discussion Summary

    http://nanohub.org/resources/11931

  18. ACUTE - Bandstructure Assignment

    07 Jul 2011 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This is assignment that is part of the ACUTE tool-based curricula that guides the students step by step how to implement an empirical pseudopotential method for the bandstructure calculation.

    http://nanohub.org/resources/11613

  19. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | Workshops | Contributor(s): Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

    http://nanohub.org/resources/11041

  20. Tutorial 4: Far-From-Equilibrium Quantum Transport

    29 Mar 2011 | Courses | Contributor(s): Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic...

    http://nanohub.org/resources/11042

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.