Tags: band structure


In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

All Categories (101-120 of 123)

  1. Simple Photonic Crystals

    18 Sep 2007 | Tools | Contributor(s): Jing Ouyang, Xufeng Wang, Minghao Qi

    Photonic Crystal characteristics in an easy way


  2. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | Online Presentations | Contributor(s): Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within...


  3. A Tutorial for Nanoelectronics Simulation Tools

    03 Jul 2007 | Online Presentations | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to some of the available simulators. The simulators discussed are FETToy, nanoMOS, Schred, CNTbands, and QDot Lab. For each simulator, a brief...


  4. Introduction to CNTbands

    28 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the CNTbands simulator. A brief introduction to CNTbands is presented, followed by voiced presentations featuring the simulator in action. Upon...


  5. StrainBands

    15 Jun 2007 | Tools | Contributor(s): Joe Ringgenberg, Joydeep Bhattacharjee, Jeffrey B. Neaton, Jeffrey C Grossman, Eric Schwegler

    Explore the influence of strain on first-principles bandstructures of semiconductors.


  6. Bandstructure of Carbon Nanotubes and Nanoribbons

    14 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Seokmin Hong, Jing Guo

    This learning module introduces users to the Carbon-Nano Bands simulation tool, which simulates the bandstructure of Carbon Nanotubes (CNTs) and Nanoribbons (CNRs). To gives users a strong...


  7. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...


  8. Energy Bands In Periodic Potentials

    06 Feb 2007 | Online Presentations | Contributor(s): Heng Li

    It is the Kronig-Penny Model. The particle in one-dimensional lattice is a problem that occurs in the model of periodic crystal lattice.The potential is caused by periodic arrangement of ions...


  9. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    29 Jan 2007 | Online Presentations | Contributor(s): Daniel Neuhauser

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is...


  10. CNTbands

    14 Dec 2006 | Tools | Contributor(s): Gyungseon Seol, Youngki Yoon, James K Fodor, Jing Guo, Akira Matsudaira, Diego Kienle, Gengchiau Liang, Gerhard Klimeck, Mark Lundstrom, Ahmed Ibrahim Saeed

    This tool simulates E-k and DOS of CNTs and graphene nanoribbons.


  11. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Sep 2006 | Papers | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them,...


  12. ECE 659 Lecture 19: Band Structure: Prelude to Sub-Bands

    20 Jul 2006 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 5.2


  13. ECE 659 Lecture 18: Band Structure: 3-D Solids

    20 Jul 2006 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 5.3


  14. ECE 659 Lecture 17: Band Structure: Beyond 1-D

    20 Jul 2006 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 5.2


  15. ECE 659 Lecture 16: Band Structure: Toy Examples

    20 Jul 2006 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 5.1


  16. Simplified Band-Structure Model

    05 Jun 2006 | Online Presentations | Contributor(s): Dragica Vasileska

    Solid-State Theory and Semiconductor Transport Fundamentals


  17. CNTphonons

    01 Jun 2006 | Tools | Contributor(s): Marcelo Alejandro Kuroda, Salvador Barraza-Lopez, J. P. Leburton

    Calculates the phonon band structure of carbon nanotubes using the force constant method.


  18. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...


  19. CNT_bands

    09 Sep 2005 | Tools | Contributor(s): Jing Guo, Akira Matsudaira

    Computes E(k) and the density-of-states (DOS) vs. energy for a carbon nanotube


  20. MSL Simulator

    17 Jun 2005 | Tools | Contributor(s): K. J. Cho

    Easy-to-use interface for designing and analyzing electronic properties of different nano materials