Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

All Categories (1-20 of 233)

  1. 1D Heterostructure Tool

    04 Aug 2008 | Tools | Contributor(s): Arun Goud Akkala, Sebastian Steiger, Jean Michel D Sellier, Sunhee Lee, Michael Povolotskyi, Tillmann Christoph Kubis, Hong-Hyun Park, Samarth Agarwal, Gerhard Klimeck, James Fonseca, Archana Tankasala

    Poisson-Schrödinger Solver for 1D Heterostructures

    http://nanohub.org/resources/1dhetero

  2. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    18 Jan 2011 | Workshops

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

    http://nanohub.org/resources/8878

  3. Band structure error in InAs UTB devices

    Closed | Responses: 0

    Dear Sir/Madam,

    first of all, I would like to thank you to have developed and made ​​available online this tool. Currently, I’m interested in the study of the band structure of http://nanohub.org/answers/question/1328

  4. What would be the electron effective mass of InAs in its electron valleys in X,Y,Z directions?

    Open | Responses: 1

    The default values in the Multi gate Nanowire tool for Si effective mass in Valley 1,2,3 in x,y,z directions are 0.19,0.19,0.98; 0.19,0.98,0.19; 0.98,0.19,0.19 respectively. Now if i am going...

    http://nanohub.org/answers/question/56

  5. A Tutorial for Nanoelectronics Simulation Tools

    03 Jul 2007 | Online Presentations | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to some of the available simulators. The simulators discussed are FETToy, nanoMOS, Schred, CNTbands, and QDot Lab. For each simulator, a brief...

    http://nanohub.org/resources/2842

  6. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

    http://nanohub.org/resources/abacus

  7. ABACUS Exercise: Bandstructure – Kronig-Penney Model and Tight-Binding Exercise

    20 Jul 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    The objective of this exercise is to start with the simple Kronig-Penney model and understand formations of bands and gaps in the dispersion relation that describes the motion of carriers in 1D...

    http://nanohub.org/resources/9372

  8. ABACUS: Test for Bandstructure Lab

    10 Aug 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This is a test that examines ones understanding of electronic structure once he/she has gone through the materials and exercises provided on the nanoHUB as part of the ABACUS Bandstructure topic...

    http://nanohub.org/resources/9493

  9. ABINIT: First-Time User Guide

    09 Jun 2009 | Teaching Materials | Contributor(s): Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We...

    http://nanohub.org/resources/6874

  10. ACUTE - Bandstructure Assignment

    07 Jul 2011 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This is assignment that is part of the ACUTE tool-based curricula that guides the students step by step how to implement an empirical pseudopotential method for the bandstructure calculation.

    http://nanohub.org/resources/11613

  11. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | Workshops | Contributor(s): Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

    http://nanohub.org/resources/11041

  12. Akash Paharia

    Currently, I am an undergraduate student in Electrical Department of Indian Institute of Technology ,Delhi. I am interested in knowing about new technologies in the field of semiconductors device...

    http://nanohub.org/members/38550

  13. AQME - Advancing Quantum Mechanics for Engineers

    12 Aug 2008 | Tools | Contributor(s): Gerhard Klimeck, Xufeng Wang, Dragica Vasileska

    One-stop-shop for teaching quantum mechanics for engineers

    http://nanohub.org/resources/aqme

  14. AQME Advancing Quantum Mechanics for Engineers

    Introduction to Advancing Quantum Mechanics for Engineers and Physicists “Advancing Quantum Mechanics for Engineers” (AQME) toolbox is an assemblage of individually authored tools...

    http://nanohub.org/wiki/AQME

  15. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350

  16. Band Structure Calculation: General Considerations

    17 May 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides explains to the users the concept of valence vs. core electrons, the implications of the adiabatic approximation on the separation of the total Hamiltonian of the system and the...

    http://nanohub.org/resources/9003

  17. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

    http://nanohub.org/resources/6815

  18. Band Structure Lab Exercise

    28 Jun 2010 | Teaching Materials | Contributor(s): Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska

    Investigations of the electron energy spectra of solids form one of the most active fields of research. Knowledge of band theory is essential for application to specific problems such as Gunn...

    http://nanohub.org/resources/9233

  19. Band Structure Lab: First-Time User Guide

    15 Jun 2009 | Teaching Materials | Contributor(s): Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck

    This document provides useful information about Band Structure Lab. First-time users will find basic ideas about the physics behind the tool such as band formation, the Hamiltonian description,...

    http://nanohub.org/resources/6935

  20. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.