Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

All Categories (61-80 of 233)

  1. ECE 659 Lecture 19: Band Structure: Prelude to Sub-Bands

    24 Feb 2003 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 5.2

    http://nanohub.org/resources/1387

  2. Electronic band structure

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes ranges of energy in which an electron is "forbidden" or "allowed". The band structure is...

    http://nanohub.org/resources/8814

  3. Electronic Transport Through Self-Assembled Monolayers

    25 Feb 2004 | Online Presentations | Contributor(s): Takhee Lee

    Characterization of charge transport in molecular scale electronic devices has to date shown exquisite sensitivity to specifics of device fabrication and preparation. Thus, intrinsic molecular...

    http://nanohub.org/resources/156

  4. Empirical Pseudopotential Method: Theory and Implementation

    17 May 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This tutorial first teaches the users the basic theory behind the Empirical Pseudopotential (EPM)Bandstructure Calculation method. Next, the implementation details of the method are described and...

    http://nanohub.org/resources/8999

  5. Energy Bands as a Function of the Geometry of the n-Well Potential: an Exercise

    05 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    Explores the position and the width of the bands as a function of the 10-barrier potential parameters. NSF

    http://nanohub.org/resources/4873

  6. Energy Bands In Periodic Potentials

    11 Jan 2007 | Online Presentations | Contributor(s): Heng Li

    It is the Kronig-Penny Model. The particle in one-dimensional lattice is a problem that occurs in the model of periodic crystal lattice.The potential is caused by periodic arrangement of ions...

    http://nanohub.org/resources/2263

  7. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

  8. Finite Height Quantum Well: an Exercise for Band Structure

    31 Jan 2008 | Teaching Materials | Contributor(s): David K. Ferry

    Use the Resonant Tunneling Diodes simulation tool on nanoHUB to explore the effects of finite height quantum wells. Looking at a 2 barrier device, 300 K, no bias, other standard variables, and 3...

    http://nanohub.org/resources/3949

  9. Homework Assignment: Periodic Potentials

    31 Jan 2008 | Teaching Materials | Contributor(s): David K. Ferry

    Using the Periodic Potential Lab on nanoHUB determine the allowed bands for an energy barrier of 5 eV, a periodicity W = 0.5nm, and a barrier thickness of 0.1nm. How do these bands change if the...

    http://nanohub.org/resources/3950

  10. Illinois ECE 440: Diffusion and Energy Band Diagram Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Diffusion of Carriers, Built-in Fields and Metal semiconductor junctions.

    http://nanohub.org/resources/8264

  11. InAs: Evolution of iso-energy surfaces for heavy, light, and split-off holes due to uniaxial strain.

    25 May 2010 | Animations | Contributor(s): Abhijeet Paul, Denis Areshkin, Gerhard Klimeck

    Movie was generated using Band Structure Lab tool at nanoHUB and allows to scan over four parameters: Hole energy measured from the top of the corresponding band (i.e. the origin of energy...

    http://nanohub.org/resources/9016

  12. Introduction to CNTbands

    28 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the CNTbands simulator. A brief introduction to CNTbands is presented, followed by voiced presentations featuring the simulator in action. Upon...

    http://nanohub.org/resources/2843

  13. Learning Module: Bonding and Band Structure in Silicon

    The main goal of this learning module is to help students learn about the correlation between atomic structure and electronic properties, and help them develop a more intuitive understanding of...

    http://nanohub.org/wiki/LearningModuleSiliconBandstructureDFT

  14. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction and Objectives Theory Experimental approach Results Discussion Summary Lecture notes are available for this lecture. Network for Computational...

    http://nanohub.org/resources/7401

  15. Low Bias Transport in Graphene: An Introduction (lecture notes)

    22 Sep 2009 | Presentation Materials | Contributor(s): Mark Lundstrom, Tony Low, Dionisis Berdebes

    These notes complement a lecture with the same title presented by Mark Lundstrom and Dionisis Berdebes, at the NCN@Purdue Summer School, July 20-24, 2009.

    http://nanohub.org/resources/7435

  16. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are...

    http://nanohub.org/resources/103

  17. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | Online Presentations | Contributor(s): Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within...

    http://nanohub.org/resources/3094

  18. MCW07 Impact of Porphyrin Functional Groups on InAs Gas Sensors

    05 Nov 2007 | Online Presentations | Contributor(s): Michael Garcia

    Porphyrin molecules are often used for sensor engineering to improve sensitivity and selectivity to specific analytes. It is important to understand how the porphyrin HOMO-LUMO levels deplete...

    http://nanohub.org/resources/3149

  19. ME 597 Lecture 1: Introduction to Basic Quantum Mechanics

    01 Sep 2009 | Online Presentations | Contributor(s): Ron Reifenberger

    Note: This lecture has been revised since its original presentation. Topics: Introduction to Basic Quantum Mechanics Energy States in Periodic Crystals Course is dual listed as...

    http://nanohub.org/resources/7321

  20. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | Online Presentations | Contributor(s): Andrei Kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors...

    http://nanohub.org/resources/5738

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.