Support

Support Options

Submit a Support Ticket

 

Tags: bottom up approach

Resources (21-40 of 58)

  1. Lecture 4: Stick Percolation and Nanonet Electronics

    26 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Stick percolation and nanonet transistors Short channel nanonet transistors Long channel nanonet transistors Transistors at high voltages Conclusions

    http://nanohub.org/resources/7172

  2. Lecture 4: Thermoelectric Effects-Physical Approach

    28 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    The effect of temperature gradients on current flow and how electrical currents produce heat currents are discussed.

    http://nanohub.org/resources/11747

  3. Lecture 5: 2D Nets in a 3D World: Basics of Nanobiosensors and Fractal Antennae

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background:
 A
 different
 type
 of
 transport
 problem
 Example:
 Classical
 biosensors Fractal 
dimension
 and
 cantor
 transform Example:
 fractal...

    http://nanohub.org/resources/7173

  4. Lecture 5: NEGF Simulation of Graphene Nanodevices

    23 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7422

  5. Lecture 5: Thermoelectric Effects - Mathematics

    16 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Beginning with the general model for transport, we mathematically derive expressions for the four thermoelectric transport coefficients: (i) Electrical conductivity, (ii) Seebeck coefficient...

    http://nanohub.org/resources/11851

  6. Lecture 6: 3D Nets in a 3D World: Bulk Heterostructure Solar Cells

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Introduction: 

definitions
 and
 review
 Reaction
 diffusion
 in 
fractal 
volumes Carrier
 transport
 in 
BH
 solar 
cells All
 phase
 transitions 
are
 not
 fractal Conclusions

    http://nanohub.org/resources/7174

  7. Lecture 6: An Introduction to Scattering

    16 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    In this lecture, we show how the mean-free-path (mfp) is related to the time between scattering events and briefly discuss how the scattering time is related to underlying physical processes.

    http://nanohub.org/resources/11856

  8. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electron optics in graphene Transmission across NP junctions Conductance of PN and NN junctions Discussion Summary Network for Computational Nanotechnology, Intel...

    http://nanohub.org/resources/7423

  9. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally...

    http://nanohub.org/resources/5314

  10. Lecture 7: On Reliability and Randomness in Electronic Devices

    14 Apr 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background
 information Principles
 of 
reliability
 physics Classification
 of 
Electronic
 Reliability Structure 
Defects
 in
 Electronic
 Materials Conclusions

    http://nanohub.org/resources/7175

  11. Lecture 7: The Boltzmann Transport Equation

    17 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Semi-classical carrier transport is traditionally described by the Boltzmann Transport Equation (BTE). In this lecture, we present the BTE, show how it is solved, and relate it to the Landauer...

    http://nanohub.org/resources/11861

  12. Lecture 8: Measurements

    16 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    A brief introduction to commonly-used techniques, such as van der Pauw and Hall effect measurements.

    http://nanohub.org/resources/11862

  13. Lecture 8: Mechanics of Defect Generation and Gate Dielectric Breakdown

    10 Mar 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    http://nanohub.org/resources/7176

  14. Lecture 9: Breakdown in Thick Dielectrics

    05 Apr 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Breakdown in gas dielectric and Paschen’s law Spatial and temporal dynamics during breakdown Breakdown in bulk oxides: puzzle Theory of pre-existing defects: Thin oxides Theory of...

    http://nanohub.org/resources/7177

  15. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

    http://nanohub.org/resources/11869

  16. Lessons from Nanoelectronics

    20 Jul 2011 | Online Presentations | Contributor(s): Supriyo Datta

    Everyone is familiar with the amazing performance of a modern laptop, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. What is...

    http://nanohub.org/resources/11700

  17. Lessons from Nanoelectronics (Q&A)

    20 Jul 2011 | Online Presentations | Contributor(s): Supriyo Datta

    Q&A session from Lessons from Nanoelectronics.

    http://nanohub.org/resources/11702

  18. Solar Cells Lecture 1: Introduction to Photovoltaics

    19 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    An introduction to solar cells covering the basics of PN junctions, optical absorption, and IV characteristics. Key technology options and economic considers are briefly presented.

    http://nanohub.org/resources/11875

  19. Solar Cells Lecture 2: Physics of Crystalline Solar Cells

    19 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Solar cell performance is determined by generation and recombination of electron-hole pairs. This tutorial focussing on recombination losses in crystalline silicon solar cells under...

    http://nanohub.org/resources/11890

  20. Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?

    29 Aug 2011 | Online Presentations | Contributor(s): Muhammad A. Alam

    Thin film solar cells promise acceptable efficiency at low cost. This tutorial examines the device physics of thin-film solar cells, which generally require a different type of analysis...

    http://nanohub.org/resources/11949

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.