Support

Support Options

Submit a Support Ticket

 

Tags: bottom up approach

Resources (21-40 of 58)

  1. 2011 NCN Summer School: Welcome and Introduction

    20 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and the...

    http://nanohub.org/resources/11704

  2. Lecture 1: Introduction to Near-equilibrium Transport

    20 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    A short overview of the topics to be discussed in the following nine lectures in this short course on near-equilibrium transport.

    http://nanohub.org/resources/11708

  3. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and...

    http://nanohub.org/resources/11029

  4. Lecture 7: On Reliability and Randomness in Electronic Devices

    14 Apr 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background
 information Principles
 of 
reliability
 physics Classification
 of 
Electronic
 Reliability Structure 
Defects
 in
 Electronic
 Materials Conclusions

    http://nanohub.org/resources/7175

  5. Lecture 9: Breakdown in Thick Dielectrics

    05 Apr 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Breakdown in gas dielectric and Paschen’s law Spatial and temporal dynamics during breakdown Breakdown in bulk oxides: puzzle Theory of pre-existing defects: Thin oxides Theory of...

    http://nanohub.org/resources/7177

  6. Lecture 8: Mechanics of Defect Generation and Gate Dielectric Breakdown

    10 Mar 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    http://nanohub.org/resources/7176

  7. Lecture 4: Graphene: An Experimentalist's Perspective

    12 Feb 2010 | Online Presentations | Contributor(s): Joerg Appenzeller

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7421

  8. Lecture 10: Interface Damage & Negative Bias Temperature Instability

    02 Feb 2010 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background information NBTI interpreted by R-D model The act of measurement and observed quantity NBTI vs. Light-induced Degradation Possibility of Degradation-free...

    http://nanohub.org/resources/7178

  9. Lecture 6: 3D Nets in a 3D World: Bulk Heterostructure Solar Cells

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Introduction: 

definitions
 and
 review
 Reaction
 diffusion
 in 
fractal 
volumes Carrier
 transport
 in 
BH
 solar 
cells All
 phase
 transitions 
are
 not
 fractal Conclusions

    http://nanohub.org/resources/7174

  10. Lecture 5: 2D Nets in a 3D World: Basics of Nanobiosensors and Fractal Antennae

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background:
 A
 different
 type
 of
 transport
 problem
 Example:
 Classical
 biosensors Fractal 
dimension
 and
 cantor
 transform Example:
 fractal...

    http://nanohub.org/resources/7173

  11. Lecture 4: Stick Percolation and Nanonet Electronics

    26 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Stick percolation and nanonet transistors Short channel nanonet transistors Long channel nanonet transistors Transistors at high voltages Conclusions

    http://nanohub.org/resources/7172

  12. Lecture 5: NEGF Simulation of Graphene Nanodevices

    23 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7422

  13. Lecture 1: Electronics from the Bottom Up

    22 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7183

  14. Lecture 2: Graphene Fundamentals

    22 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7384

  15. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electron optics in graphene Transmission across NP junctions Conductance of PN and NN junctions Discussion Summary Network for Computational Nanotechnology, Intel...

    http://nanohub.org/resources/7423

  16. Introductory Comments

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    http://nanohub.org/resources/7167

  17. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction and Objectives Theory Experimental approach Results Discussion Summary Lecture notes are available for this lecture.

    http://nanohub.org/resources/7401

  18. Lecture 1: Percolation and Reliability of Electronic Devices

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7169

  19. Lecture 2: Threshold, Islands, and Fractals

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7170

  20. Lecture 3: Electrical Conduction in Percolative Systems

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7171

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.