Tags: bottom up approach

Resources (21-40 of 59)

  1. Lecture 2: Thresholds, Islands, and Fractals

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Three basic concepts of the percolation theory – namely, percolation threshold, cluster size distribution, and fractal dimension – are defined and methods to calculate them are illustrated via elementary examples. These three concepts will form the theoretical foundation for discussion in...

  2. Lecture 3: Electrical Conduction in Percolative Systems

    17 Sep 2009 | | Contributor(s):: Muhammad A. Alam

  3. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Introduction and ObjectivesTheoryExperimental approachResultsDiscussionSummaryLecture notes are available for this lecture.

  4. Lecture 3: Resistance-Ballistic to Diffusive

    28 Jul 2011 | | Contributor(s):: Mark Lundstrom

    The resistance of a ballistic conductor and concepts, such as the quantumcontact resistance, are introduced and discussed. The results are then generalized to treat transport all the way from the ballistic to diffusive regimes.

  5. Lecture 4: Graphene: An Experimentalist's Perspective

    12 Feb 2010 | | Contributor(s):: Joerg Appenzeller

  6. Lecture 4: Stick Percolation and Nanonet Electronics

    26 Oct 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Stick percolation and nanonet transistorsShort channel nanonet transistorsLong channel nanonet transistorsTransistors at high voltagesConclusions

  7. Lecture 4: Thermoelectric Effects-Physical Approach

    28 Jul 2011 | | Contributor(s):: Mark Lundstrom

    The effect of temperature gradients on current flow and how electrical currents produce heat currents are discussed.

  8. Lecture 5: 2D Nets in a 3D World: Basics of Nanobiosensors and Fractal Antennae

    27 Oct 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Background: A different type of transport problem
Example: Classical biosensorsFractal dimension and cantor transformExample: fractal nanobiosensors Conclusions
Appendix: Transparent Electrodes and Antenna

  9. Lecture 5: NEGF Simulation of Graphene Nanodevices

    23 Sep 2009 | | Contributor(s):: Supriyo Datta

  10. Lecture 5: Thermoelectric Effects - Mathematics

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Beginning with the general model for transport, we mathematically deriveexpressions for the four thermoelectric transport coefficients:(i) Electrical conductivity,(ii) Seebeck coefficient (or "thermopower"),(iii) Peltier coefficient,(iv) Electronic heat conductivity.

  11. Lecture 6: 3D Nets in a 3D World: Bulk Heterostructure Solar Cells

    27 Oct 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Introduction: definitions and review
Reaction diffusion in fractal volumesCarrier transport in BH solar cellsAll phase transitions are not fractalConclusions

  12. Lecture 6: An Introduction to Scattering

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    In this lecture, we show how the mean-free-path (mfp) is related to thetime between scattering events and briefly discuss how the scattering time is related to underlying physical processes.

  13. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:IntroductionElectron optics in grapheneTransmission across NP junctionsConductance of PN and NN junctionsDiscussionSummary

  14. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | | Contributor(s):: Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nano-device to show the connection explicitly.

  15. Lecture 7: On Reliability and Randomness in Electronic Devices

    14 Apr 2010 | | Contributor(s):: Muhammad A. Alam

    Outline:Background informationPrinciples of reliability physicsClassification of Electronic ReliabilityStructure Defects in Electronic MaterialsConclusions

  16. Lecture 7: The Boltzmann Transport Equation

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Semi-classical carrier transport is traditionally described by the Boltzmann Transport Equation (BTE). In this lecture, we present theBTE, show how it is solved, and relate it to the Landauer Approach usedin these lectures

  17. Lecture 8: Measurements

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    A brief introduction to commonly-used techniques, such as van der Pauw and Hall effect measurements.

  18. Lecture 8: Mechanics of Defect Generation and Gate Dielectric Breakdown

    10 Mar 2010 | | Contributor(s):: Muhammad A. Alam

  19. Lecture 9: Breakdown in Thick Dielectrics

    05 Apr 2010 | | Contributor(s):: Muhammad A. Alam

    Outline:Breakdown in gas dielectric and Paschen’s lawSpatial and temporal dynamics during breakdownBreakdown in bulk oxides: puzzleTheory of pre-existing defects: Thin oxidesTheory of pre-existing defects: thick oxidesConclusions

  20. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.