Support

Support Options

Submit a Support Ticket

 

Tags: bottom up approach

All Categories (41-60 of 119)

  1. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | Workshops | Contributor(s): Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on...

    http://nanohub.org/resources/7113

  2. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | Courses | Contributor(s): Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

    http://nanohub.org/resources/7180

  3. Lecture 1: Electronics from the Bottom Up

    22 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7183

  4. Lecture 2: Graphene Fundamentals

    22 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7384

  5. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electron optics in graphene Transmission across NP junctions Conductance of PN and NN junctions Discussion Summary Network for Computational Nanotechnology, Intel...

    http://nanohub.org/resources/7423

  6. Introductory Comments

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    http://nanohub.org/resources/7167

  7. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction and Objectives Theory Experimental approach Results Discussion Summary Lecture notes are available for this lecture. Network for Computational...

    http://nanohub.org/resources/7401

  8. Lecture 1: Percolation and Reliability of Electronic Devices

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7169

  9. Lecture 2: Threshold, Islands, and Fractals

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7170

  10. Lecture 3: Electrical Conduction in Percolative Systems

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7171

  11. Nanostructured Electronic Devices: Percolation and Reliability

    17 Sep 2009 | Courses | Contributor(s): Muhammad A. Alam

    In this series of lectures introduces a simple theoretical framework for treating randomness and variability in emerging nanostructured electronic devices for wide ranging applications – all...

    http://nanohub.org/resources/7168

  12. Jul 20 2009

    2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    Electronics from the Bottom Up seeks to bring a new perspective to engineering education -- one that is designed to help realize the opportunities of nanotechnology. Ever since the birth of...

    http://nanohub.org/events/details/231

  13. Lecture 2: Thresholds, Islands, and Fractals

    04 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Three basic concepts of the percolation theory – namely, percolation threshold, cluster size distribution, and fractal dimension – are defined and methods to calculate them are illustrated via...

    http://nanohub.org/resources/5698

  14. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the...

    http://nanohub.org/resources/5697

  15. Percolation Theory

    03 Nov 2008 | Courses | Contributor(s): Muhammad A. Alam

    The electronic devices these days have become so small that the number of dopant atoms in the channel of a MOFET transistor, the number of oxide atoms in its gate dielectric, the number silicon-...

    http://nanohub.org/resources/5660

  16. Introductory Comments

    29 Sep 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    http://nanohub.org/resources/5502

  17. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally...

    http://nanohub.org/resources/5314

  18. Physics of Nanoscale MOSFETs

    26 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of...

    http://nanohub.org/resources/5306

  19. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all...

    http://nanohub.org/resources/5210

  20. Nanoelectronics and the Meaning of Resistance

    20 Aug 2008 | Courses | Contributor(s): Supriyo Datta

    The purpose of this series of lectures is to introduce the "bottom-up" approach to nanoelectronics using concrete examples. No prior knowledge of quantum mechanics or statistical mechanics is...

    http://nanohub.org/resources/5279

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.