Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

Resources (1-20 of 173)

  1. 2003 Molecular Conduction Workshop Agenda

    09 Jul 2003 |

    This workshop brought together leading groups in this field to discuss status and key challenges in molecular electronics. Both experimental and theoretical/modeling efforts were discussed.

  2. 2004 Linking Bio and Nano Symposium

    26 Jul 2004 |

    Explore ways universities can work together in Bio-NanoTechnology. Discover research opportunities in this emerging area. Network with professionals and researchers who share common interests. Hear the latest on current research topics

  3. 2004 Molecular Conduction Workshop

    08 Jul 2004 |

    The tutorials supplied below were part of the Molecular Conduction Workshop held at Northwestern University in July of 2004.

  4. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 |

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL (2004). The workshop has been an informal and open venue for discussing new results, key challenges, and...

  5. 2D FEA Carbon Nanotube Growth

    27 Oct 2023 | | Contributor(s):: Matt Maschmann, Gordon Lee Koerner

    This is a FEA simulation to model the in-situ assembly of carbon nanotube forests.

  6. 3D Molecular Models

    21 Jun 2007 | | Contributor(s):: Nicholas Vargo

    This animation was created as part of the Children's Museum Nanotechnology Exhibit to give the viewer an idea of what objects look like at the nano-level. The molecules range from something as small as caffeine to major proteins and viruses.

  7. A CNTFET-Based Nanowired Induction Two-Way Transducers

    05 Sep 2012 | | Contributor(s):: Rostyslav Sklyar

    A complex of the induction magnetic field two-way nanotransducers of the different physical values for both the external and implantable interfaces in a wide range of arrays are summarized. Implementation of the nanowires allows reliable transducing of the biosignals' partials and bringing of...

  8. A Comparative Study of nanoHUB Tools for the Simulation of Carbon-based FETs

    31 Aug 2015 | | Contributor(s):: Jose M. de la Rosa

    This work compares the different tools available in nanoHUB for the electrical simulation of carbon- based field-effect transistors made up of either carbon nanotubes (CNTs) or graphene. ...

  9. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  10. A New Terahertz Heterodyne Detector Based on Single-Walled Carbon Nanotubes

    27 Jul 2005 | | Contributor(s):: Sigfrid Yngvesson

    We present non-invasive methods for improving the sensitivity of label-free biosensors that offer the advantage of rapid and real-time detection but suffer from relatively low sensitivity. We present detection of cancer markers using the Quartz Crystal Microbalance and demonstrate that 2...

  11. Alternative Hitachi SEM Techniques

    13 May 2022 |

    Robert Passeri, Hitachi engineer, discusses STEM and low kV imaging techniques with the Hitachi SEM S4800.

  12. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

  13. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    09 Mar 2013 | | Contributor(s):: Rafael Vargas-Bernal, Gabriel Herrera-Pérez, Ma. Elena Calixto-Olalde, Margarita Tecpoyotl-Torres

    The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to...

  14. Atomic Force Microscopy

    01 Dec 2005 | | Contributor(s):: Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  15. Atomistic Modeling of the Mechanical Properties of Nanostructured Materials

    16 Apr 2007 | | Contributor(s):: SeongJun Heo, Susan Sinnott

    The mechanical properties of carbon nanotubes are studied by using classical molecular dynamics simulations. Especially, the effects of filling, temperature, and functionalization on CNT's tensional and twisting properties are considered in this study.

  16. Bandstructure of Carbon Nanotubes and Nanoribbons

    14 Jun 2007 | | Contributor(s):: James K Fodor, Seokmin Hong, Jing Guo

    This learning module introduces users to the Carbon-Nano Bands simulation tool, which simulates the bandstructure of Carbon Nanotubes (CNTs) and Nanoribbons (CNRs). To gives users a strong background in bandstructure, the module starts with sections that introduce bandstructure basics. To this...

  17. Bending Properties of Carbon Nanotubes

    21 Mar 2006 | | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of filling carbon nanotubes on the mechanical, especially bending, behavior of empty and filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, influences of different filling materials like C60 or other CNT...

  18. BME 695L Lecture 5: Nanomaterials for Core Design

    14 Sep 2011 | | Contributor(s):: James Leary

    See references below for related reading.5.1      Introduction5.1.1    core building blocks5.1.2    functional cores5.1.3    functionalizing the core surface5.2      Ferric...

  19. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | | Contributor(s):: David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  20. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.