Tags: carbon nanotubes


100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

Online Presentations (1-20 of 85)

  1. Coherent Nonlinear Optical Propagation Processes in Hyperbolic Metamaterials

    08 Jun 2017 | | Contributor(s):: Alexander K. Popov

    Coherence and interference play an important role in classic and quantum physics. Processes to be employed can be significantly enhanced and the unwanted ones suppressed through the deliberately tailored constructive and destructed interference at quantum transitions and at nonlinear optical...

  2. The Role of Dimensionality on Phonon-Limited Charge Transport: from CNTs to Graphene

    27 Oct 2016 | | Contributor(s):: Jing Li, Yann-Michel Niquet

    IWCE 2015 presentation.

  3. Multi-Scale Modeling of Metal-CNT Interfaces

    03 Nov 2015 | | Contributor(s):: Martin Claus

    IWCE 2015 presentation.  the authors studied the impact of contact materials on cntfet behavior using multiscale modeling and simulation framework. a strong correlation between metal-cnt coupling strength, contact length and contact resistance was found. the atomistic simulation was used to...

  4. The Road Ahead for Carbon Nanotube Transistors

    09 Jul 2013 | | Contributor(s):: Aaron Franklin

    In this talk, recent advancements in the nanotube transistor field will be reviewed, showing why CNTFETs are worth considering now more than ever. Then, the material- and device-related challenges to realizing a nanotube-driven digital technology will be covered.

  5. Carbon-Based Nanoswitch Logic

    28 Mar 2013 | | Contributor(s):: Stephen A. Campbell

    This talk discusses a rather surprising possibility: the use of carbon-based materials such as carbon nanotubes and grapheneto make nanomechanical switches with at least an order of magnitude lower power dissipation than the low power CMOS options and performance between the various CMOS...

  6. Journey Along the Carbon Road

    19 Apr 2012 | | Contributor(s):: Zhihong Chen

    I will discuss two distinct topics: In the first part of my talk I will present results on carbon nanotubes focusing on high performance computing with the aim to replace silicon in logic device applications. Specifically, the ballistic transport regime that has been reached with the shortest...

  7. BME 695L Lecture 5: Nanomaterials for Core Design

    03 Oct 2011 | | Contributor(s):: James Leary

    See references below for related reading.5.1      Introduction5.1.1    core building blocks5.1.2    functional cores5.1.3    functionalizing the core surface5.2      Ferric...

  8. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    16 Aug 2011 | | Contributor(s):: Timothy S Fisher

    Outline:Thermal boundary resistanceElectronic transportReal interfaces and measurementsCarbon nanotube interfaces

  9. Nanodays - Space—Lab on Chip Technology: The final frontier

    18 May 2011 | | Contributor(s):: Marshall Porterfield

  10. NanoDays - Artificial Photosynthesis with Biomimetic Nanomaterials: Self-Repairing Solar Cells

    05 May 2011 | | Contributor(s):: Jong Hyun Choi

  11. Putting the Electron’s Spin to Work

    14 Apr 2011 | | Contributor(s):: Daniel Ralph

    I will discuss recent progress in experimental techniques to control the orientations of nanoscale magnetic moments and electron spins, and to use these new means of control for applications. One powerful new capability arises from the fact that thin magnetic layers can act as filters for spins.

  12. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  13. Illinois Nano EP Seminar Series Spring 2010 - Lecture 3: Characterization and Modeling of Transport in Single Walled Carbon Nanotube Films for Device Applications

    23 Feb 2011 | | Contributor(s):: Ashkan Behnam

    Single‐walled carbon nanotube (CNT) films are transparent, conductive, and flexible materials. These films have uniform physical and electronic properties, and can be mass produced in a cost effective manner. Due to these favorable properties, they have been suggested for various applications...

  14. Illinois Nano EP Seminar Series Spring 2010 - Lecture 5: Alignment of Carbon Nanotubes: a Route to Nanoelectronics

    29 Jan 2011 | | Contributor(s):: Jianliang Xiao

    Single walled carbon nanotubes (SWNTs) possess extraordinary electrical properties, with many possible applications in electronics. Dense, horizontally aligned arrays of linearly configured SWNTs represent perhaps the most attractive and scalable way to implement this class of nanomaterial in...

  15. Translational Research in Nano and Bio Mechanics

    18 Nov 2010 | | Contributor(s):: Ken P. Chong

    One of the most challenging problems is the integration and interface between wet (biological) and dry (structural) materials. Nano and bio science and engineering is one of the frontiers in transformative and translational research. The transcendent technologies include nanotechnology,...

  16. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | | Contributor(s):: Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries, and biosensors. This talk will delineate chemical strategies for enhancing the electronic and optical...

  17. Self-Consistent Geometry, Density and Stiffness of Carbon Nanotubes

    05 May 2010 | | Contributor(s):: R. Byron Pipes

    A self-consistent set of relationships is developed for the physical properties of single walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of the chiral vector integer pair, (n,m). Properties include effective radius, density, principal Young’s modulus, and specific...

  18. ECET 499N Lecture 11: Carbon Nanotubes - Synthesis and Applications

    12 Apr 2010 |

    Guest Lecture: Sungwon S. Kim

  19. ECET 499N Lecture 10: Nanomaterials

    12 Apr 2010 | | Contributor(s):: Helen McNally

  20. Surface Characterization Studies of Carbon Materials: SS-DNA, SWCNT, Graphene, HOPG

    16 Feb 2010 | | Contributor(s):: Dmitry Zemlyanov

    In this presentation examples of surface characterization studies of carbon specimens will be presented. (1) In particularly, the systematic XPS (X-ray photoelectron spectroscopy) characterization of graphene grown on the SiC surface will be reported. This work demonstrates a use for XPS to...