Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

Online Presentations (1-20 of 85)

  1. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  2. A New Terahertz Heterodyne Detector Based on Single-Walled Carbon Nanotubes

    27 Jul 2005 | | Contributor(s)::

    We present non-invasive methods for improving the sensitivity of label-free biosensors that offer the advantage of rapid and real-time detection but suffer from relatively low sensitivity. We present detection of cancer markers using the Quartz Crystal Microbalance and demonstrate that 2...

  3. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

  4. Atomic Force Microscopy

    01 Dec 2005 | | Contributor(s):: Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  5. Atomistic Modeling of the Mechanical Properties of Nanostructured Materials

    16 Apr 2007 | | Contributor(s):: SeongJun Heo, Susan Sinnott

    The mechanical properties of carbon nanotubes are studied by using classical molecular dynamics simulations. Especially, the effects of filling, temperature, and functionalization on CNT's tensional and twisting properties are considered in this study.

  6. Bending Properties of Carbon Nanotubes

    21 Mar 2006 | | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of filling carbon nanotubes on the mechanical, especially bending, behavior of empty and filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, influences of different filling materials like C60 or other CNT...

  7. BME 695L Lecture 5: Nanomaterials for Core Design

    14 Sep 2011 | | Contributor(s):: James Leary

    See references below for related reading.5.1      Introduction5.1.1    core building blocks5.1.2    functional cores5.1.3    functionalizing the core surface5.2      Ferric...

  8. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | | Contributor(s):: David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  9. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  10. BNC Research Review: Carbon Nanotubes as Nucleic Acid Carriers

    04 Jun 2008 | | Contributor(s)::

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  11. Carbon Nanotechnology: Scientific and Technological Issues

    24 Feb 2008 | | Contributor(s):: Joe Lyding

    Carbon nanotechnologies based on single-walled carbon nanotubes (SWNTs) and graphene (a single atomic layer of graphite) are being pursued for a wide range of technological applications ranging from chemical sensing to post-silicon nanoelectronics. A common thread is the need to atomistically...

  12. Carbon-Based Nanoswitch Logic

    21 Mar 2013 | | Contributor(s):: Stephen A. Campbell

    This talk discusses a rather surprising possibility: the use of carbon-based materials such as carbon nanotubes and grapheneto make nanomechanical switches with at least an order of magnitude lower power dissipation than the low power CMOS options and performance between the various CMOS...

  13. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    25 Oct 2010 | | Contributor(s):: Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries, and biosensors. This talk will delineate chemical strategies for enhancing the electronic and optical...

  14. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | | Contributor(s):: Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada....

  15. Coherent Nonlinear Optical Propagation Processes in Hyperbolic Metamaterials

    08 Jun 2017 | | Contributor(s):: Alexander K. Popov

    Coherence and interference play an important role in classic and quantum physics. Processes to be employed can be significantly enhanced and the unwanted ones suppressed through the deliberately tailored constructive and destructed interference at quantum transitions and at nonlinear optical...

  16. Dendrimer-Templated Catalyst for Controlled Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD

    20 Feb 2007 | | Contributor(s):: Placidus Amama

    Carbon nanotubes (CNTs) are an important class of materials with several technological applications because they possess unparalleled properties in terms of ballistic electrical conductivity, thermal conductivity, tensile strength, and sensitivity to chemical and biological agents. To exploit...

  17. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | | Contributor(s):: Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing the excitation, charge, spin, and vibrational dynamics in a variety of novel materials, including...

  18. ECET 499N Lecture 10: Nanomaterials

    07 Apr 2010 | | Contributor(s):: Helen McNally

  19. ECET 499N Lecture 11: Carbon Nanotubes - Synthesis and Applications

    12 Apr 2010 |

    Guest Lecture: Sungwon S. Kim

  20. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | | Contributor(s)::

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.