Support

Support Options

Submit a Support Ticket

 

Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

Resources (1-20 of 139)

  1. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement...

    http://nanohub.org/resources/1021

  2. A New Terahertz Heterodyne Detector Based on Single-Walled Carbon Nanotubes

    27 Jul 2005 | Online Presentations | Contributor(s): Sigfrid Yngvesson

    We present non-invasive methods for improving the sensitivity of label-free biosensors that offer the advantage of rapid and real-time detection but suffer from relatively low sensitivity. We...

    http://nanohub.org/resources/532

  3. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

    http://nanohub.org/resources/513

  4. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  5. Atomistic Modeling of the Mechanical Properties of Nanostructured Materials

    16 Apr 2007 | Online Presentations | Contributor(s): SeongJun Heo, Susan Sinnott

    The mechanical properties of carbon nanotubes are studied by using classical molecular dynamics simulations. Especially, the effects of filling, temperature, and functionalization on CNT's...

    http://nanohub.org/resources/2604

  6. Bending Properties of Carbon Nanotubes

    21 Mar 2006 | Online Presentations | Contributor(s): SeongJun Heo, Susan Sinnott

    The effect of filling carbon nanotubes on the mechanical, especially bending, behavior of empty and filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular...

    http://nanohub.org/resources/1106

  7. BME 695L Lecture 5: Nanomaterials for Core Design

    03 Oct 2011 | Online Presentations | Contributor(s): James Leary

    See references below for related reading. 5.1      Introduction 5.1.1    core building blocks 5.1.2    functional...

    http://nanohub.org/resources/12057

  8. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | Online Presentations | Contributor(s): David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2632

  9. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2636

  10. BNC Research Review: Carbon Nanotubes as Nucleic Acid Carriers

    04 Jun 2008 | Online Presentations | Contributor(s): Don Bergstrom

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/4712

  11. Carbon Nanotechnology: Scientific and Technological Issues

    24 Feb 2008 | Online Presentations | Contributor(s): Joe Lyding

    Carbon nanotechnologies based on single-walled carbon nanotubes (SWNTs) and graphene (a single atomic layer of graphite) are being pursued for a wide range of technological...

    http://nanohub.org/resources/4089

  12. Carbon-Based Nanoswitch Logic

    28 Mar 2013 | Online Presentations | Contributor(s): Stephen A. Campbell

    This talk discusses a rather surprising possibility: the use of carbon-based materials such as carbon nanotubes and grapheneto make nanomechanical switches with at least an order of magnitude...

    http://nanohub.org/resources/17328

  13. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | Online Presentations | Contributor(s): Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries,...

    http://nanohub.org/resources/9929

  14. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  15. Dendrimer-Templated Catalyst for Controlled Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD

    20 Feb 2007 | Online Presentations | Contributor(s): Placidus Amama

    Carbon nanotubes (CNTs) are an important class of materials with several technological applications because they possess unparalleled properties in terms of ballistic electrical conductivity,...

    http://nanohub.org/resources/2341

  16. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...

    http://nanohub.org/resources/3951

  17. ECET 499N Lecture 10: Nanomaterials

    12 Apr 2010 | Online Presentations | Contributor(s): Helen McNally

    http://nanohub.org/resources/8771

  18. ECET 499N Lecture 11: Carbon Nanotubes - Synthesis and Applications

    12 Apr 2010 | Online Presentations

    Guest Lecture: Sungwon S. Kim

    http://nanohub.org/resources/8827

  19. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | Online Presentations | Contributor(s): Rich Goldman

    Rich Goldman gives an overview of the current state of the semiconductor and EDA (Electronic Design Automation) industry with a special focus on the impact of nanometer scale design on design...

    http://nanohub.org/resources/1220

  20. Electrodeposition of Palladium as an Ohmic Contact for Single-Walled Carbon Nanotubes

    03 Aug 2006 | Online Presentations | Contributor(s): Brent Penque, David Janes

    Carbon nanotubes are being researched extensively for their unique conductive properties. Controlled growth of vertical single-walled carbon nanotubes, however, has not yet been possible. This...

    http://nanohub.org/resources/1663

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.