Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

Resources (21-40 of 173)

  1. The Role of Dimensionality on Phonon-Limited Charge Transport: from CNTs to Graphene

    27 Oct 2016 | | Contributor(s):: Jing Li, Yann-Michel Niquet

    IWCE 2015 presentation.

  2. E304 L4.2.4: Nanomaterials - Nanostructures (carbon nanotubes, fullerenes, graphene)

    29 Mar 2016 | | Contributor(s):: ASSIST ERC

  3. Multi-Scale Modeling of Metal-CNT Interfaces

    03 Nov 2015 | | Contributor(s):: Martin Claus

    IWCE 2015 presentation.  the authors studied the impact of contact materials on cntfet behavior using multiscale modeling and simulation framework. a strong correlation between metal-cnt coupling strength, contact length and contact resistance was found. the atomistic simulation was used to...

  4. A Comparative Study of nanoHUB Tools for the Simulation of Carbon-based FETs

    03 Sep 2015 | | Contributor(s):: Jose M. de la Rosa

    This work compares the different tools available in nanoHUB for the electrical simulation of carbon- based field-effect transistors made up of either carbon nanotubes (CNTs) or graphene. ...

  5. Variation-Aware Nanosystem Design Kit (NDK)

    30 Jul 2015 | | Contributor(s):: Gage Hills

    Carbon nanotube field-effect transistors (CNFETs) are promising candidates for building energy-efficient digital systems at highly scaled technology nodes. However, carbon nanotubes (CNTs) are inherently subject to variations that reduce circuit yield, increase susceptibility to noise, and...

  6. Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface Materials

    22 Jul 2014 | | Contributor(s):: Yide Wang, Sridhar Sadasivam, Timothy S Fisher

    Simulate mechanical and thermal performance of CNT thermal interface materials.

  7. Crystal Viewer V3.0 First Time User Guide

    19 Jan 2015 | | Contributor(s):: Yuanchen Chu, James Fonseca, Michael Povolotskyi, Gerhard Klimeck

    This first-time user guide is an introduction to the Crystal Viewer Tool V3.0.

  8. High-Frequency Carbon Nanotube Transistors: Fabrication, Characterization, and Compact Modeling

    19 Nov 2014 | | Contributor(s):: Martin Claus

    The talk covers different aspects in the manufacturing of high-frequency CNTFETs, electrical device characterization and compact modeling of CNTFETs. The applicability of the semi physics-based compact model CCAM for designing digital and analog HF circuits is shown. In particular, the model...

  9. High-Frequency Carbon Nanotube Transistors: A Multi-Scale Simulation Framework

    19 Nov 2014 | | Contributor(s):: Martin Claus

    The talk gives an overview on a multi-scale simulation framework with which this question can be answered. Methods to study the steady-state and transient quantum and semi-classical transport phenomena in CNTFETs and their application for the optimization of CNTFETs will be discussed. Special...

  10. Using nanoHUB to Introduce Elementary and Middle School Students to Models and Simulations

    24 Mar 2014 | | Contributor(s):: Tanya Faltens

    This is a combination hands-on and simulation activity that will teach middle school students about the function and importance of modeling and simulations in science and engineering while learning about three important carbon nanostructures: graphene, bucky balls, and carbon nanotubes. The...

  11. The Road Ahead for Carbon Nanotube Transistors

    09 Jul 2013 | | Contributor(s):: Aaron Franklin

    In this talk, recent advancements in the nanotube transistor field will be reviewed, showing why CNTFETs are worth considering now more than ever. Then, the material- and device-related challenges to realizing a nanotube-driven digital technology will be covered.

  12. Quantum and Atomistic Effects in Nanoelectronic Transport Devices

    26 Jun 2013 | | Contributor(s):: Neophytos Neophytou

    As devices scale towards atomistic sizes, researches in silicon electronic device technology are investigating alternative structures and materials. As predicted by the International Roadmap for Semiconductors, (ITRS), structures will evolve from planar devices into devices that include 3D...

  13. Inelastic Transport in Carbon Nanotube Electronic and Optoelectronic Devices

    26 Jun 2013 | | Contributor(s):: Siyu Koswatta

    Discovered in the early 1990's, carbon nanotubes (CNTs) are found to have exceptional physical characteristics compared to conventional semiconductor materials, with much potential for devices surpassing the performance of present-day electronics. Semiconducting CNTs have large carrier mobilities...

  14. Electron Phonon Interaction in Carbon Nanotube Devices

    27 Jun 2013 | | Contributor(s):: Sayed Hasan

    With the end of silicon technology scaling in sight, there has been a lot of interest in alternate novel channel materials and device geometry. Carbon nanotubes, the ultimate one-dimensional (1D) wire, is one such possibility. Since the report of the first CNT transistors, lots has been learned...

  15. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    27 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  16. In-situ Carbon Nanotube Bending Tests

    31 May 2013 | | Contributor(s):: Brian Demczyk

    This video shows a series of in-situ TEM bending manipulations on carbon nanotubes, demonstrating the remarkable flexibility of these materials.

  17. Buckypaper

    16 Apr 2013 | | Contributor(s):: shaheen goel

    the presentation gives a basic idea about the buckypaper and give breif details about the synthesis properties and applications of buckypaper

  18. Random Forest Model Objects for Pulmonary Toxicity Risk Assessment

    09 Apr 2013 | | Contributor(s):: Jeremy M Gernand

    This download contains MATLAB treebagger or Random Forest (RF) model objects created via meta-analysis of nanoparticle rodent pulmonary toxicity experiments. The ReadMe.txt file contains object descriptions including output definitions, input parameter descriptions, and applicable limits.

  19. Carbon-Based Nanoswitch Logic

    21 Mar 2013 | | Contributor(s):: Stephen A. Campbell

    This talk discusses a rather surprising possibility: the use of carbon-based materials such as carbon nanotubes and grapheneto make nanomechanical switches with at least an order of magnitude lower power dissipation than the low power CMOS options and performance between the various CMOS...

  20. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    09 Mar 2013 | | Contributor(s):: Rafael Vargas-Bernal, Gabriel Herrera-Pérez, Ma. Elena Calixto-Olalde, Margarita Tecpoyotl-Torres

    The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to...