Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (121-140 of 188)

  1. Atomistic Modeling of the Mechanical Properties of Nanostructured Materials

    23 Apr 2007 | Online Presentations | Contributor(s): SeongJun Heo, Susan Sinnott

    The mechanical properties of carbon nanotubes are studied by using classical molecular dynamics simulations. Especially, the effects of filling, temperature, and functionalization on CNT's...

    http://nanohub.org/resources/2604

  2. Fouling Mechanisms in Y-shaped Carbon Nanotubes

    04 Apr 2007 | Online Presentations | Contributor(s): Jason Myers, SeongJun Heo, Susan Sinnott

    In the modern pharmaceutical and chemical industries, solutions of extremely high purity are needed. Current filtration methods are reaching the limits of their abilities, so new filters must be...

    http://nanohub.org/resources/2582

  3. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  4. MSE 376 Lecture 7: Carbon Nanomaterials, part 2

    22 Mar 2007 | Online Presentations | Contributor(s): Mark Hersam

    http://nanohub.org/resources/2506

  5. MSE 376 Lecture 6: Carbon Nanomaterials, part 1

    22 Mar 2007 | Online Presentations | Contributor(s): Mark Hersam

    http://nanohub.org/resources/2503

  6. MSE 376 Lecture 8: Carbon Nanomaterials, part 3

    22 Mar 2007 | Online Presentations | Contributor(s): Mark Hersam

    http://nanohub.org/resources/2509

  7. Schottky-Barrier CNFET

    16 Mar 2007 | Tools | Contributor(s): Arash Hazeghi, Tejas Krishnamohan, H.-S. Philip Wong

    Simulate Carbon Nanotube field Effect transistor with Schottky Barriers

    http://nanohub.org/resources/sbcnfet

  8. Carbon Nanotubes Interconnect Analyzer (CNIA)

    14 Mar 2007 | Tools | Contributor(s): Sansiri Tanachutiwat, Wei Wang

    Analyze performances of carbon nanotube bundle interconnects

    http://nanohub.org/resources/cnia

  9. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | Online Presentations | Contributor(s): Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does...

    http://nanohub.org/resources/2359

  10. Dendrimer-Templated Catalyst for Controlled Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD

    21 Feb 2007 | Online Presentations | Contributor(s): Placidus Amama

    Carbon nanotubes (CNTs) are an important class of materials with several technological applications because they possess unparalleled properties in terms of ballistic electrical conductivity,...

    http://nanohub.org/resources/2341

  11. CNTFET Lab

    09 Feb 2007 | Tools | Contributor(s): Neophytos Neophytou, Shaikh S. Ahmed, Eric Polizzi, Gerhard Klimeck, Mark Lundstrom

    Simulates ballistic transport properties in 3D Carbon NanoTube Field Effect Transistor (CNTFET) devices

    http://nanohub.org/resources/cntfet

  12. SPMW Nanotube, nanoneedle and nanomeniscus: mechanical and wetting properties of modified AFM tip apex

    08 Feb 2007 | Online Presentations | Contributor(s): J. P. Aimé

    Among AFM microscopes, Dynamic force microscopes (DFM) are very sensitive to variation of minute forces involved in the interaction between the tip and the surface. However, despite numerous...

    http://nanohub.org/resources/2103

  13. SPMW Nanomechanics: from nanotechnology to biology

    08 Feb 2007 | Online Presentations | Contributor(s): Elisa Riedo

    The development of new materials with size of few nanometers has opened a new field of scientific and technological research. The goal is to develop faster and better communication systems and...

    http://nanohub.org/resources/2101

  14. Highly Efficient Thermal Transport: The Application of Carbon Nanotube Array Interfaces

    01 Feb 2007 | Online Presentations | Contributor(s): Baratunde A. Cola

    Carbon nanotubes (CNTs) have received much attention in recent years for their extraordinary properties that through careful engineering may be leverage for the development of numerous...

    http://nanohub.org/resources/2317

  15. CNTbands

    14 Dec 2006 | Tools | Contributor(s): Gyungseon Seol, Youngki Yoon, James K Fodor, Jing Guo, Akira Matsudaira, Diego Kienle, Gengchiau Liang, Gerhard Klimeck, Mark Lundstrom, Ahmed Ibrahim Saeed

    This tool simulates E-k and DOS of CNTs and graphene nanoribbons.

    http://nanohub.org/resources/cntbands-ext

  16. Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    21 Nov 2006 | Online Presentations | Contributor(s): Chuck L Geraci

    Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    http://nanohub.org/resources/2008

  17. MOSCNT: code for carbon nanotube transistor simulation

    15 Nov 2006 | Downloads | Contributor(s): Siyu Koswatta, Jing Guo, Dmitri Nikonov

    Ballistic transport in carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) is simulated using the Non-equilibrium Green’s function formalism. A cylindrical...

    http://nanohub.org/resources/1989

  18. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | Papers | Contributor(s): Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias...

    http://nanohub.org/resources/1928

  19. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    21 Sep 2006 | Papers | Contributor(s): Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we...

    http://nanohub.org/resources/1818

  20. Nanoelectronic Architectures

    28 Aug 2006 | Online Presentations | Contributor(s): Greg Snider

    Nanoelectronic architectures at this point are necessarily speculative: We are still evaluating many different approaches to fabrication and are exploring unconventional devices made possible at...

    http://nanohub.org/resources/181