Tags: carbon nanotubes


100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (121-140 of 206)

  1. Journey Along the Carbon Road

    19 Apr 2012 | | Contributor(s):: Zhihong Chen

    I will discuss two distinct topics: In the first part of my talk I will present results on carbon nanotubes focusing on high performance computing with the aim to replace silicon in logic device applications. Specifically, the ballistic transport regime that has been reached with the shortest...

  2. Justin Koepke


  3. Kartik Kapoor


  4. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | | Contributor(s):: Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic transport at room-temperature over several hundred nanometers, high performance CN field-effect...

  5. Lourdu Deepak

    Hi friends, Currently i'm doing my master in VLSI design, and looking forward to a project in Nano electronics which is totally related to nano fabrication and nano FINFETs and all other explained...


  6. Matthew Glen Robertson


  7. Mini-Workshop on Carbon-Nanotube FETs

    13 May 2003 |

    This informal one-day workshop was intended to discuss theory, modeling, and simulation for CNT-electronics, specifically FETs. The objective was to kick off an NSF-funded project on the modeling and simulatin of CNT-electronics. A small group of experimentalists, theorists, and computational...

  8. Model Validation Document for "A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies – How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes"

    19 Nov 2012 | | Contributor(s):: Jeremy M Gernand, Elizabeth Casman

    This document contains model learning statistics, and structure of the models utilized in the paper “A meta-analysis of carbon nanotube pulmonary toxicity studies – How physical dimensions and impurities affect the toxicity of carbon nanotubes.” This information is meant to supplement and...

  9. Modern X-ray Scattering Methods for Nanoscale Materials Analysis

    15 Oct 2008 | | Contributor(s):: Richard J. Matyi

    Since its discovery by von Laue in 1912, X-ray diffraction has become an indispensable tool for structure determinations in the physical and biological sciences. X-rays are characterized by high energies and by wavelengths that are commensurate with nanometer-sized structures – unlike optical...

  10. Mohammed AlMoataz Tammous


  11. Molecular Dynamics Studies of Gaseous Transport

    05 Apr 2006 | | Contributor(s):: Ki-Ho Lee, Jason, Susan Sinnott

    Carbon nanotubes (CNTs) have generated a great deal of interest due to their unique properties. In this study, we examine the transport properties of various nanotubes using REBO-MD to determine the effects of diameter and chirality on transport mode. Both oxygen and methane were diffused...

  12. Moore's Law Forever?

    13 Jul 2005 | | Contributor(s):: Mark Lundstrom

    This talk covers the big technological changes in the 20th and 21st century that were correctly predicted by Gordon Moore in 1965. Moore's Law states that the number of transistors on a silicon chip doubles every technology generation. In 1960s terms that meant every 12 months and currently this...

  13. MOSCNT: code for carbon nanotube transistor simulation

    14 Nov 2006 | | Contributor(s):: Siyu Koswatta, Jing Guo, Dmitri Nikonov

    Ballistic transport in carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) is simulated using the Non-equilibrium Green’s function formalism. A cylindrical transistor geometry with wrapped-around gate and doped source/drain regions are assumed. It should be noted...

  14. MSE 376 Lecture 6: Carbon Nanomaterials, part 1

    22 Mar 2007 |

  15. MSE 376 Lecture 7: Carbon Nanomaterials, part 2

    22 Mar 2007 |

  16. MSE 376 Lecture 8: Carbon Nanomaterials, part 3

    22 Mar 2007 |

  17. MSL Simulator

    17 Jun 2005 | | Contributor(s):: Kyeongjae Cho

    Easy-to-use interface for designing and analyzing electronic properties of different nano materials

  18. Muhammad Ihsan Ul Haq


  19. Multi-Scale Modeling of Metal-CNT Interfaces

    26 Oct 2015 | | Contributor(s):: Martin Claus

    IWCE 2015 presentation.  the authors studied the impact of contact materials on cntfet behavior using multiscale modeling and simulation framework. a strong correlation between metal-cnt coupling strength, contact length and contact resistance was found. the atomistic simulation was used to...

  20. Multiple Transfers of Single-Walled Carbon Nanotubes on Silicon Wafers

    18 Mar 2009 | | Contributor(s):: Alan Salvador Teran

    Single-walled carbon nanotubes (SWCNTs) have many applications, including high speed transistor devices (see Figure 1). SWCNTs are grown on single-crystal quartz wafers and then transferred onto silicon wafers by a process that involves gold evaporation and thermal release tape. When they are...