Support

Support Options

Submit a Support Ticket

 

Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (161-180 of 313)

  1. The Novel Nanostructures of Carbon

    28 Feb 2008 | Online Presentations | Contributor(s): Gene Dresselhaus

    A brief review will be given of the physical underpinnings of carbon nanostructures that were developed over the past 60 years, starting with the electronic structure and physical properties of...

    http://nanohub.org/resources/3997

  2. The Road Ahead for Carbon Nanotube Transistors

    09 Jul 2013 | Online Presentations | Contributor(s): Aaron Franklin

    In this talk, recent advancements in the nanotube transistor field will be reviewed, showing why CNTFETs are worth considering now more than ever. Then, the material- and device-related challenges...

    http://nanohub.org/resources/18867

  3. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | Online Presentations | Contributor(s): Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies...

    http://nanohub.org/resources/1182

  4. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    20 Sep 2006 | Publications | Contributor(s): Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we...

    http://nanohub.org/resources/1818

  5. Translational Research in Nano and Bio Mechanics

    18 Nov 2010 | Online Presentations | Contributor(s): Ken P. Chong

    One of the most challenging problems is the integration and interface between wet (biological) and dry (structural) materials. Nano and bio science and engineering is one of the frontiers in...

    http://nanohub.org/resources/10029

  6. Tribological Properties of Carbon Nanotube Bundles

    03 Apr 2006 | Online Presentations | Contributor(s): SeongJun Heo, Susan Sinnott

    The tribological properties of carbon nanotube(CNT) bundles are investigated in this research using classical molecular dynamics(MD) simulations. Bundle of hollow single walled CNT or CNT filled...

    http://nanohub.org/resources/1168

  7. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and...

    http://nanohub.org/resources/11029

  8. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    16 Aug 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    Outline: Thermal boundary resistance Electronic transport Real interfaces and measurements Carbon nanotube interfaces “Electronics from the Bottom Up” is an educational initiative designed...

    http://nanohub.org/resources/11840

  9. Understanding Phonon Dynamics via 1D Atomic Chains

    04 Apr 2006 | Online Presentations | Contributor(s): Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices....

    http://nanohub.org/resources/1186

  10. Vertically Aligned Carbon Nanotube for Interconnects and Nanoelectrode Based Biosensors

    15 Apr 2004 | Online Presentations | Contributor(s): Jun Li

    In the past few years, tremendous progress in the growth of carbon nanotubes (CNTs) has been made, which enabled the fabrication of various CNT devices for applications in electronics, biomedical...

    http://nanohub.org/resources/162

  11. Vijayakumar Selvamany

    Dr. S. Vijayakumar is Associate Professor at Sri Ramakrishna Institute of Technology and a Researcher in Nanomedicine, Nanoelectronics and carbon nanotubes for engineering applications. He...

    http://nanohub.org/members/104528

  12. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | Online Presentations | Contributor(s): Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does...

    http://nanohub.org/resources/2359

  13. What is "Nanofluidics"? or The Nano-izing of Fluid Mechanics

    28 Jun 2006 | Online Presentations | Contributor(s): Steve Wereley

    Micro- and nanoscaled fluid mechanics are rapidly emerging as important supporting fields in biomedical technology, nanotechnology, etc., as well as being important fields of study in their own...

    http://nanohub.org/resources/1604

  14. What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?

    18 Feb 2008 | Online Presentations | Contributor(s): Joerg Appenzeller

    Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be...

    http://nanohub.org/resources/4059

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.