Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (61-80 of 207)

  1. Chowdhury, Prodipto

    http://nanohub.org/members/152180

  2. CM Kaushik

    http://nanohub.org/members/141571

  3. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | | Contributor(s):: Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada....

  4. CNRS - Carbon Nanotube Interconnect RC Model

    06 Oct 2017 | Compact Models | Contributor(s):

    By Jie LIANG, Aida Todri1

    CNRS

    This CNT Interconnect Compact Model includes a solid physics understanding and electrical modeling for pristine and doped SWCNT as Interconnect applications. SWCNT resistance and capacitance are...

    http://nanohub.org/publications/200/?v=1

  5. CNT Creating Python script

    05 Jul 2017 | | Contributor(s):: Saksham Soni

    It can work through running python script directly on PC without using Internet .Just you download and install NanoTCAD ViDES and then we can simulate CNT and GNR without using nanohub or internet.

  6. CNT Heterojunction Modeler

    20 Mar 2008 | | Contributor(s):: Joe Ringgenberg, Joydeep Bhattacharjee, Jeffrey B. Neaton, Jeffrey C Grossman

    Study the structure and electronic properties of carbon nanotubes with linear heterojunctions.

  7. CNT Mobility

    26 Apr 2009 | | Contributor(s):: Yang Zhao, Albert Liao, Eric Pop

    Simulate field effect carrier mobility in back-gated CNTFET devices at low field

  8. CNTbands

    14 Dec 2006 | | Contributor(s):: Gyungseon Seol, Youngki Yoon, James K Fodor, Jing Guo, Akira Matsudaira, Diego Kienle, Gengchiau Liang, Gerhard Klimeck, Mark Lundstrom, Ahmed Ibrahim Saeed

    This tool simulates E-k and DOS of CNTs and graphene nanoribbons.

  9. CNTFET Lab

    13 Mar 2006 | | Contributor(s):: Neophytos Neophytou, Shaikh S. Ahmed, POLIZZI ERIC, Gerhard Klimeck, Mark Lundstrom

    Simulates ballistic transport properties in 3D Carbon NanoTube Field Effect Transistor (CNTFET) devices

  10. CNTphonons

    30 May 2006 | | Contributor(s):: Marcelo Kuroda, Salvador Barraza-Lopez,

    Calculates the phonon band structure of carbon nanotubes using the force constant method.

  11. CNT_bands

    09 Sep 2005 | | Contributor(s):: Jing Guo, Akira Matsudaira

    Computes E(k) and the density-of-states (DOS) vs. energy for a carbon nanotube

  12. Coherent Nonlinear Optical Propagation Processes in Hyperbolic Metamaterials

    07 Jun 2017 | | Contributor(s):: Alexander K. Popov

    Coherence and interference play an important role in classic and quantum physics. Processes to be employed can be significantly enhanced and the unwanted ones suppressed through the deliberately tailored constructive and destructed interference at quantum transitions and at nonlinear optical...

  13. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

  14. Computational Nanoscience, Lecture 5: A Day of In-Class Simulation: MD of Carbon Nanostructures

    13 Feb 2008 | | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the LAMMPS tool (within the nanoHUB simulation toolkit for this course). Examples include calculating the energy per atom of different fullerenes and nantubes, computing the Young's modulus of a...

  15. Crystal Viewer Demonstration: Bravais Lattices

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated.

  16. Crystal Viewer Demonstration: Bravais Lattices 2

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated

  17. Crystal Viewer Demonstration: Various Crystal Systems

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the use of the Crystal Viewer Tool to visualize several crystal systems, including Si, GaAs, C60 Buckyball, and a carbon nanotube. Crystal systems are rotated in 3D, zoomed in and out, and the lattice style changes from sticks and balls to lines to spheres.

  18. Crystal Viewer Tool

    22 Dec 2007 | | Contributor(s):: Yuanchen Chu, Fan Chen, Daniel F Mejia, James Fonseca, Michael Povolotskyi, Gerhard Klimeck

    Visualize different crystal lattices and planes

  19. Crystal Viewer Tool Learning Materials

    By completing the Crystal Viewer Lab in ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors, users will be able to understand: a) crystals,b) crystal...

    http://nanohub.org/wiki/CrystalViewerPage

  20. Cylindrical CNT MOSFET Simulator

    22 Jul 2008 | | Contributor(s):: Gloria Wahyu Budiman, Yunfei Gao, Xufeng Wang, Siyu Koswatta, Mark Lundstrom

    Simulate 2-D electrons transport in CNTFET