Tags: carbon nanotubes


100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (61-80 of 185)

  1. CNT Mobility

    20 Jan 2010 | Tools | Contributor(s): Yang Zhao, Albert Liao, Eric Pop

    Simulate field effect carrier mobility in back-gated CNTFET devices at low field


  2. CNTbands

    14 Dec 2006 | Tools | Contributor(s): Gyungseon Seol, Youngki Yoon, James K Fodor, Jing Guo, Akira Matsudaira, Diego Kienle, Gengchiau Liang, Gerhard Klimeck, Mark Lundstrom, Ahmed Ibrahim Saeed

    This tool simulates E-k and DOS of CNTs and graphene nanoribbons.


  3. CNTFET Lab

    09 Feb 2007 | Tools | Contributor(s): Neophytos Neophytou, Shaikh S. Ahmed, Eric Polizzi, Gerhard Klimeck, Mark Lundstrom

    Simulates ballistic transport properties in 3D Carbon NanoTube Field Effect Transistor (CNTFET) devices


  4. CNTphonons

    01 Jun 2006 | Tools | Contributor(s): Marcelo Alejandro Kuroda, Salvador Barraza-Lopez, J. P. Leburton

    Calculates the phonon band structure of carbon nanotubes using the force constant method.


  5. CNT_bands

    09 Sep 2005 | Tools | Contributor(s): Jing Guo, Akira Matsudaira

    Computes E(k) and the density-of-states (DOS) vs. energy for a carbon nanotube


  6. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the...


  7. Computational Nanoscience, Lecture 5: A Day of In-Class Simulation: MD of Carbon Nanostructures

    15 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the LAMMPS tool (within the nanoHUB simulation toolkit for this course). Examples include...


  8. Crystal Viewer Demonstration: Bravais Lattices

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated.


  9. Crystal Viewer Demonstration: Bravais Lattices 2

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated


  10. Crystal Viewer Demonstration: Various Crystal Systems

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the use of the Crystal Viewer Tool to visualize several crystal systems, including Si, GaAs, C60 Buckyball, and a carbon nanotube. Crystal systems are rotated in 3D, zoomed in...


  11. Crystal Viewer Tool

    11 Jan 2008 | Tools | Contributor(s): Yuanchen Chu, Fan Chen, Daniel F Mejia, James Fonseca, Michael Povolotskyi, Gerhard Klimeck

    Visualize different crystal lattices and planes


  12. Crystal Viewer Tool Learning Materials

    By completing the Crystal Viewer Lab in ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors, users will be able to understand: a) crystals,b) crystal...


  13. Cylindrical CNT MOSFET Simulator

    19 Aug 2008 | Tools | Contributor(s): Gloria Wahyu Budiman, Yunfei Gao, Xufeng Wang, Siyu Koswatta, Mark Lundstrom

    Simulate 2-D electrons transport in CNTFET


  14. Dendrimer-Templated Catalyst for Controlled Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD

    21 Feb 2007 | Online Presentations | Contributor(s): Placidus Amama

    Carbon nanotubes (CNTs) are an important class of materials with several technological applications because they possess unparalleled properties in terms of ballistic electrical conductivity,...


  15. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes

    07 Oct 2011 | Papers | Contributor(s): Brian Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl. R. O. Ritchie

    This work represents the first in-situ measurenment of the tensile strength of a carbon nanotuube.


  16. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    01 Feb 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...


  17. ECET 499N Lecture 10: Nanomaterials

    12 Apr 2010 | Online Presentations | Contributor(s): Helen McNally


  18. ECET 499N Lecture 11: Carbon Nanotubes - Synthesis and Applications

    12 Apr 2010 | Online Presentations

    Guest Lecture: Sungwon S. Kim


  19. ECET 499N: Introduction to Nanotechnology

    30 Mar 2009 | Courses | Contributor(s): Helen McNally

    An introduction to the emerging area of nanotechnology will be studied. The primary focus will be on the technologies of nanotechnology, with specific emphasis on electronics and electrical...


  20. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | Online Presentations | Contributor(s): Rich Goldman

    Rich Goldman gives an overview of the current state of the semiconductor and EDA (Electronic Design Automation) industry with a special focus on the impact of nanometer scale design on design...