Tags: circuits

Description

In 1973, SPICE was introduced to the world by Professor Donald O. Pederson of the University of California at Berkeley, and a new era of computer-aided design (CAD) tools was born. As its name implies, SPICE is a "Simulation Program with Integrated Circuit Emphasis." You give it a description of an electrical circuit, made up of resistors, capacitors, inductors, and power sources, and SPICE will predict the performance of that circuit. Instead of bread-boarding new designs in the lab, circuit designers found they could optimize their designs on computers–in effect, using computers to build better computers. Since its introduction, SPICE has been commercialized and released in a dozen variants, such as H-SPICE, P-SPICE, and ADVICE.

Learn more about circuit simulation from the resources on this site, listed below. You might even acquire a taste for SPICE by running examples online.

All Categories (21-40 of 57)

  1. On the Rise of an Electronic Species: Thoughts on the Impending Singularity

    29 Nov 2007 | | Contributor(s):: Kerry Bernstein

    The human brain is vastly more complex that our best supercomputers; yet it can be argued that both systems evolve towards common underlying solutions to fundamental compute problems. Biologically-inspired electronic technologies already are enabling new products, and inversely, nano-electronics...

  2. ThrEshold Logic Synthesizer (TELS) and Majority Logic Synthezier (MALS)

    09 Oct 2007 | | Contributor(s):: Pallav Gupta

    TELS and MALS are threshold and majority/minority logic synthesis tools that were developed by Rui Zhang and Pallav Gupta under the supervision of Prof. Niraj K. Jha of Princeton University. Dr. Lin Zhong, of Rice University, was also a contributor.Both of these tools have been integrated into...

  3. Simulating with PETE: Purdue Exploratory Technology Evaluator

    25 Sep 2007 | | Contributor(s):: Arijit Raychowdhury

    Using PETE one can evaluate any MOSFET like devices or any New Devices in terms of performance on Benchmark circuits. The input to the tool can be in terms of typical MOSFET parameters or in terms of I-V and C-V tables. The Benchmark circuits include minimum sized inverter, nand chain, norchain,...

  4. MCW07 Conductance Switching in Fluorene/TiO2 Molecular Heterojunctions

    13 Sep 2007 | | Contributor(s):: Richard L.McCreery

    Molecular junctions consisting of a monolayer of fluorene and 10 nm of TiO2 between conducting contacts exhibit a memory effect upon positive polarization of the of the TiO2 for a few milliseconds. The junction conductance increases for a period of several minutes, but can be “erased” by a...

  5. Amine Linked Single Molecule Circuits: Systematic Measurements & Understanding

    02 Jul 2007 | | Contributor(s):: Mark S Hybertsen

    Formation and function of well-defined linkages between organic molecules and metallic electrodes has been a key issue in the field of molecular electronics. We recently discovered that the conductance of single molecule junctions formed using gold-amine linkages can be measured reliably and...

  6. PETE : Purdue Emerging Technology Evaluator

    26 Jun 2007 | | Contributor(s):: Arijit Raychowdhury, Charles Augustine, Yunfei Gao, Mark Lundstrom, Kaushik Roy

    Estimate circuit level performance and power of novel devices

  7. SUGAR: the SPICE for MEMS

    21 May 2007 | | Contributor(s):: Jason Clark

    In this seminar, I present some design, modeling, and simulation features of a computer aided engineering tool for microelectromechanical systems (MEMS) called SUGAR. For experimental verification, I use a microdevice that is difficult to simulate with conventional MEMS software. I show that the...

  8. Modeling and Analysis of VLSI Interconnects

    10 May 2007 | | Contributor(s):: Cheng-Kok Koh

    With continual technology scaling, the accurate and efficient modeling and simulation of interconnect effects have become problems of central importance. In order to accurately model the distributive effects of interconnects, it is necessary to divide a long wire into several segments, with each...

  9. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | | Contributor(s):: Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada....

  10. Nano-CMOS

    06 Feb 2007 | | Contributor(s):: wei zhao, yu cao

    Predictive model files for future transistor technologies.

  11. RF MEMS: Passive Components and Architectures

    02 Jan 2007 | | Contributor(s):: Dimitrios Peroulis

    This seminar is an introduction to the MEMS technology as itapplies to RF and Microwave systems. Besides discussing several key RFMEMS components (switches, varactors, inductors), reconfigurable circuitarchitectures will also be introduced. In addition, reliability and costconsiderations as...

  12. Nanoelectronic Architectures

    24 Feb 2005 | | Contributor(s):: Greg Snider

    Nanoelectronic architectures at this point are necessarily speculative: We are still evaluating many different approaches to fabrication and are exploring unconventional devices made possible at the nano scale. This talk will start off with a review of some "classical" crossbar structures using...

  13. Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs

    08 Aug 2006 | | Contributor(s):: Monica Taba, Gerhard Klimeck

    Electrical characteristics of various Fin field-effect transistors (FinFETs) and silicon-nanowires were analyzed and compared using a modified three-dimensional self-consistent quantum-mechanical simulator in order to investigate device performance. FinFETs have been proposed to fulfill the...

  14. ECE 612 Lecture 2: Introduction to Device Simulation

    08 Aug 2006 | | Contributor(s):: Mark Lundstrom

  15. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 | | Contributor(s):: Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  16. History of Semiconductor Engineering

    28 Jun 2006 | | Contributor(s):: Bo Lojek

    When basic researchers started working on semiconductors during the late nineteen thirties and on integrated circuits at the end of the nineteen fifties, they did not know that their work would change the lives of future generations. Very few people at that time recognized the significance of...

  17. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | | Contributor(s):: Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic transport at room-temperature over several hundred nanometers, high performance CN field-effect transistors...

  18. Switching Energy in CMOS Logic: How far are we from physical limit?

    24 Apr 2006 | | Contributor(s):: Saibal Mukhopadhyay

    Aggressive scaling of CMOS devices in technology generation has resulted in exponential growth in device performance, integration density and computing power. However, the power dissipated by a silicon chip is also increasing in every generation and emerging as a major bottleneck to technology...

  19. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  20. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...