
MCW07 Electronic Level Alignment at MetalMolecule Contacts with a GW Approach
05 Sep 2007   Contributor(s):: Jeffrey B. Neaton
Most recent theoretical studies of electron transport in singlemolecule junctions rely on a Landauer approach, simplified to treat electronelectron interactions at a meanfield level within density functional theory (DFT). While this framework has proven relatively accurate for certain...

MCW07 Modeling Chargingbased Switching in Molecular Transport Junctions
23 Aug 2007   Contributor(s):: Sina Yeganeh, , Mark Ratner
We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is successful in predicting both hysteresis and NDR behavior, and the model is elaborated with image charge...

MIT AtomicScale Modeling Toolkit
15 Jan 2008   Contributor(s):: daniel richards, Elif Ertekin, Jeffrey C Grossman, David Strubbe, Justin Riley
Tools for AtomicScale Modeling

Molecular Modeling and Electronic Structure Calculations
28 Apr 2017   Contributor(s):: George C. Schatz, Baudilio Tejerina, Shelby Hatch, Jennifer Roden
This is a purely computational project that is concerned with using the nanoHUB tool QCLab to create and optimize molecules, and to study their spectroscopic and structural properties. The molecules studied are generally small molecules of interest to atmospheric chemistry, however the tool can...

Molecular Workbench: An Interface to the Molecular World
25 Jun 2006   Contributor(s):: Charles Xie
The Molecular Workbench software is a free, opensource modeling and authoring program specifically designed for use in science education. Powered by a set of realtime molecular simulation engines that compute and visualize the motion of particles interacting through force fields, in both 2D...

Northwestern University Initiative for Teaching Nanoscience
12 Aug 2008   Contributor(s):: Baudilio Tejerina
This package allows users to study and analyze of molecular properties using various electronic structure methods.

Perspectives on Computational Quantum Chemistry
20 Dec 2007   Contributor(s):: Martin P. HeadGordon
This presentation was one of 13 presentations in the oneday forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

The basics of quantum Monte Carlo
15 Jun 2007   Contributor(s):: Lucas Wagner, Jeffrey C Grossman, Jeffrey B. Neaton
Quantum Monte Carlo is a highly accurate method to approximately solve the Schrodinger equation. I explain quantum Monte Carlo in a way that should be accessible to someone who is somewhat familiar with quantum mechanics. The discussion is mostly conceptual.Lucas Wagner is a postdoctoral...

Theoretical Electron Density Visualizer
01 Jul 2008   Contributor(s):: Baudilio Tejerina
TEDVis calculates and displays 3D maps of molecular ED and its derivatives from the wave function.

UV/Vis Spectra simulator
04 Mar 2008   Contributor(s):: Baudilio Tejerina
This tool computes molecular electronic spectra.

[Illinois] PHYS466 2013: Atomic Scale Simulations
03 Feb 2013   Contributor(s):: David M. Ceperley
Application of Monte Carlo and Molecular Dynamics techniques in primarily classical simulations to understand and predict properties of microscopic systems in materials science, physics, biology, and chemistry. Numerical algorithms, connections between simulation results and real properties of...