Tags: computational materials

All Categories (1-20 of 43)

  1. Dibya Prakash Rai

    http://nanohub.org/members/187116

  2. Muhammad Rashid

    Computational Material science and find the various properties using various DFT codes.

    http://nanohub.org/members/175317

  3. getahun walelign Ayele

    http://nanohub.org/members/156582

  4. Matthew Glen Robertson

    http://nanohub.org/members/149764

  5. ECE 595E Numerical Simulations for Energy Applications

    17 Jan 2013 | | Contributor(s):: Peter Bermel

  6. Application-driven Co-Design: Using Proxy Apps in the ASCR Materials Co-Design Center

    31 May 2012 | | Contributor(s):: Jim Belak

    Computational materials science is performed with a suite of applications that span the quantum mechanics of interatomic bonding to the continuum mechanics of engineering problems and phenomenon specific models in between. In this talk, we will review this suite and the motifs used in each of...

  7. D Ray Johnson

    Retired from ORNL Materials Science and Technology Division after 37 years.

    http://nanohub.org/members/54782

  8. NCN, nanoHUB, HUBzero: cyberinfrastructure for nanotechnology

    10 Feb 2011 | | Contributor(s):: Mark Lundstrom

    Presentation made at the Workshop to Develop the Global Nanotechnology Network, Grenoble, France.

  9. Goranka Bilalbegovic

    http://nanohub.org/members/45672

  10. Computer in Science Engineering: featuring nanoHUB.org

    22 Apr 2010 |

    The current issue of Computing in Science and Engineering focuses on cyber-enabled nanotechnology, and nanoHUB.org is featured extensively throughout.

  11. Chunyu Li

    http://nanohub.org/members/34504

  12. Purdue School on High Performance and Parallel Computing

    24 Nov 2008 | | Contributor(s):: Alejandro Strachan, Faisal Saied

    The goal of this workshop is to provide training in the area of high performance scientific computing for graduate students and researchers interested in scientific computing. The School will address current hardware and software technologies and trends for parallel computing and their...

  13. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  14. Northwestern University Initiative for Teaching Nanoscience

    12 Aug 2008 | | Contributor(s):: Baudilio Tejerina

    This package allows users to study and analyze of molecular properties using various electronic structure methods.

  15. Virtual Kinetics of Materials Laboratory: Spinodal Decomposition 3D

    04 Aug 2008 | | Contributor(s):: Michael Waters, R. Edwin Garcia, Alex Bartol

    Simulates the Time-Dependent Segregation of Two Chemical Components

  16. Virtual Kinetics of Materials Laboratory : Spinodal Decomposition

    29 Jul 2008 | | Contributor(s):: Michael Waters, Alex Bartol, R. Edwin Garcia

    Applies the Classic Cahn-Hilliard Equation to Simulate the Chemical Segregation of Two Phases (2D)

  17. Computational Nanoscience, Lecture 20: Quantum Monte Carlo, part I

    15 May 2008 | | Contributor(s):: Elif Ertekin, Jeffrey C Grossman

    This lecture provides and introduction to Quantum Monte Carlo methods. We review the concept of electron correlation and introduce Variational Monte Carlo methods as an approach to going beyond the mean field approximation. We describe briefly the Slater-Jastrow expansion of the wavefunction,...

  18. Computational Nanoscience, Lecture 21: Quantum Monte Carlo, part II

    15 May 2008 | | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    This is our second lecture in a series on Quantum Monte Carlo methods. We describe the Diffusion Monte Carlo approach here, in which the approximation to the solution is not restricted by choice of a functional form for the wavefunction. The DMC approach is explained, and the fixed node...

  19. Computational Nanoscience, Pop-Quiz

    15 May 2008 | | Contributor(s):: Elif Ertekin, Jeffrey C Grossman

    This quiz summarizes the most important concepts which have covered in class so far related to Molecular Dynamics, Classical Monte Carlo Methods, and Quantum Mechanical Methods.University of California, Berkeley

  20. Computational Nanoscience, Pop-Quiz Solutions

    15 May 2008 | | Contributor(s):: Elif Ertekin, Jeffrey C Grossman

    The solutions to the pop-quiz are given in this handout.University of California, Berkeley