Support

Support Options

Submit a Support Ticket

 

Tags: computational materials

Resources (21-36 of 36)

  1. Computational Nanoscience, Lecture 18: Density Functional Theory and some Solid Modeling

    21 Mar 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    We continue our discussion of Density Functional Theory, and describe the most-often used approaches to describing the exchange-correlation in the system (LDA, GGA, and hybrid functionals). We...

    http://nanohub.org/resources/4166

  2. Computational Nanoscience, Lecture 12: In-Class Simulation of Ising Model

    28 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    This is a two part lecture in which we discuss the spin-spin correlation function for the the Ising model, correlation lengths, and critical slowing down. An in-class simulation of the 2D Ising...

    http://nanohub.org/resources/4126

  3. Computational Nanoscience, Homework Assignment 4: Hard-Sphere Monte Carlo and Ising Model

    05 Mar 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this assignment, you will explore the use of Monte Carlo techniques to look at (1) hard-sphere systems and (2) Ising model of the ferromagnetic-paramagnetic phase transition in two-dimensions. ...

    http://nanohub.org/resources/4134

  4. Computational Nanoscience, Lecture 10: Brief Review, Kinetic Monte Carlo, and Random Numbers

    25 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    We conclude our discussion of Monte Carlo methods with a brief review of the concepts covered in the three previous lectures. Then, the Kinetic Monte Carlo method is introduced, including...

    http://nanohub.org/resources/4090

  5. Computational Nanoscience, Lecture 11: Phase Transitions and the Ising Model

    27 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this lecture, we present an introduction to simulations of phase transitions in materials. The use of Monte Carlo methods to model phase transitions is described, and the Ising Model is given...

    http://nanohub.org/resources/4122

  6. Computational Nanoscience, Lecture 9: Hard-Sphere Monte Carlo In-Class Simulation

    19 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the HSMC tool (within the nanoHUB simulation toolkit for this course). The hard sphere system is one...

    http://nanohub.org/resources/4067

  7. Computational Nanoscience, Lecture 8: Monte Carlo Simulation Part II

    14 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this lecture, we continue our discussion of Monte Carlo simulation. Examples from Hard Sphere Monte Carlo simulations based on the Metropolis algorithm and from Grand Canonical Monte Carlo...

    http://nanohub.org/resources/4056

  8. Computational Nanoscience, Homework Assignment 3: Molecular Dynamics Simulation of Carbon Nanotubes

    14 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    The purpose of this assignment is to perform molecular dynamics simulations to calculate various properties of carbon nanotubes using LAMMPS and Tersoff potentials. This assignment is to be...

    http://nanohub.org/resources/4054

  9. Computational Nanoscience, Homework Assignment 2: Molecular Dynamics Simulation of a Lennard-Jones Liquid

    14 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    The purpose of this assignment is to perform a full molecular dynamics simulation based on the Verlet algorithm to calculate various properties of a simple liquid, modeled as an ensemble of...

    http://nanohub.org/resources/4052

  10. Computational Nanoscience, Lecture 6: Pair Distribution Function and More on Potentials

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture we remind ourselves what a pair distribution function is, how to compute it, and why it is so important in simulations. Then, we revisit potentials and go into more detail...

    http://nanohub.org/resources/4039

  11. Computational Nanoscience, Lecture 5: A Day of In-Class Simulation: MD of Carbon Nanostructures

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the LAMMPS tool (within the nanoHUB simulation toolkit for this course). Examples include...

    http://nanohub.org/resources/4037

  12. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the...

    http://nanohub.org/resources/4035

  13. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...

    http://nanohub.org/resources/3951

  14. MIT Atomic Scale Modeling Toolkit

    15 Jan 2008 | Tools | Contributor(s): daniel richards, Elif Ertekin, Jeffrey C Grossman, David Strubbe, Justin Riley

    Tools for Atomic Scale Modeling

    http://nanohub.org/resources/ucb_compnano

  15. Session 4: Discussion

    20 Dec 2007 | Online Presentations

    Discussion led by Mark Allendorf, Sandia National Laboratory.

    http://nanohub.org/resources/3737

  16. Excellence in Computer Simulation

    19 Dec 2007 | Workshops | Contributor(s): Mark Lundstrom, Jeffrey B. Neaton, Jeffrey C Grossman

    Computational science is frequently labeled as a third branch of science - equal in standing with theory and experiment, and computational engineering is now an essential component of technology...

    http://nanohub.org/resources/3617

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.