
Examples for QuaMC 2D particlebased device Simulator Tool
10 May 2008   Contributor(s):: Dragica Vasileska, Shaikh S. Ahmed, Gerhard Klimeck
We provide three examples that demonstrate the full capabilities of QuaMC 2D for alternative device technologies.

Computational Nanoscience, Lecture 19: Band Structure and Some InClass Simulation: DFT for Solids
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
In this class we briefly review band structures and then spend most of our class on inclass simulations. Here we use the DFT for molecules and solids (Siesta) course toolkit. We cover a variety of solids, optimizing structures, testing kpoint convergence, computing cohesive energies, and...

Computational Nanoscience, Lecture 18.5: A Little More, and Lots of Repetition, on Solids
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
Here we go over again some of the basics that one needs to know and understand in order to carry out electronic structure, atomicscale calculations of solids.

Computational Nanoscience, Lecture 16: More and Less than HartreeFock
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
In the lecture we discuss both techniques for going "beyond" HartreeFock in order to include correlation energy as well as techniques for capturing electronic structure effects while not having to solve the full HartreeFock equations (ie, semiempirical methods). We also very briefly touch...

Computational Nanoscience, Lecture 15: InClass Simulations: HartreeFock
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
Using a range of examples, we study the effect of basis set on convergence, the HartreeFock accuracy compared to experiment, and explore a little bit of molecular chemistry.

Computational Nanoscience, Lecture 14: HartreeFock Calculations
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
A description of the HartreeFock method and practical overview of its application. This lecture is to be used in conjunction with the course toolkit, with the HartreeFock simulation module.

Computational Nanoscience, Lecture 13: Introduction to Computational Quantum Mechanics
30 Apr 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
In this lecture we introduce the basic concepts that will be needed as we explore simulation approaches that describe the electronic structure of a system.

nanoHUB.org: Future Cyberinfrastructure Serving a Community of 60,000 Today
23 Apr 2008   Contributor(s):: George B. Adams III, Gerhard Klimeck, Mark Lundstrom, Michael McLennan
nanoHUB.org provides users with "fingertip access" to over 70 simulation tools for research and education. Users not only launch jobs that are executed on the stateoftheart computational facilities of Open Science Grid and TeraGrid, but also interactively visualize and analyze the results—all...

UV/Vis Spectra simulator
04 Mar 2008   Contributor(s):: Baudilio Tejerina
This tool computes molecular electronic spectra.

Computational Nanoscience, Lecture 12: InClass Simulation of Ising Model
28 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
This is a two part lecture in which we discuss the spinspin correlation function for the the Ising model, correlation lengths, and critical slowing down. An inclass simulation of the 2D Ising Model is performed using the tool "Berkeley Computational Nanoscience Class Tools". We look at domain...

Computational Nanoscience, Homework Assignment 4: HardSphere Monte Carlo and Ising Model
05 Mar 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
In this assignment, you will explore the use of Monte Carlo techniques to look at (1) hardsphere systems and (2) Ising model of the ferromagneticparamagnetic phase transition in twodimensions. This assignment is to be completed following lecture 12 and using the "Hard Sphere Monte Carlo" and...

Computational Nanoscience, Lecture 10: Brief Review, Kinetic Monte Carlo, and Random Numbers
25 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
We conclude our discussion of Monte Carlo methods with a brief review of the concepts covered in the three previous lectures. Then, the Kinetic Monte Carlo method is introduced, including discussions of Transition State Theory and basic KMC algorithms. A simulation of vacancymediated diffusion...

Computational Nanoscience, Lecture 11: Phase Transitions and the Ising Model
27 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
In this lecture, we present an introduction to simulations of phase transitions in materials. The use of Monte Carlo methods to model phase transitions is described, and the Ising Model is given as an example for modeling the ferromagneticparamagnetic transition. Some of the subtleties of...

Quantum and Semiclassical Electrostatics Simulation of SOI Trigates
19 Feb 2008   Contributor(s):: HyungSeok Hahm, Andres Godoy
Generate quantum/semiclassical electrostatic simulation results for a simple Trigate structure

Computational Nanoscience, Lecture 9: HardSphere Monte Carlo InClass Simulation
19 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
In this lecture we carry out simulations inclass, with guidance from the instructors. We use the HSMC tool (within the nanoHUB simulation toolkit for this course). The hard sphere system is one of the simplest systems which exhibits an orderdisorder phase transition, which we will explore with...

Computational Nanoscience, Lecture 8: Monte Carlo Simulation Part II
14 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
In this lecture, we continue our discussion of Monte Carlo simulation. Examples from Hard Sphere Monte Carlo simulations based on the Metropolis algorithm and from Grand Canonical Monte Carlo simulations of fullerene growth on spherical surfaces are presented. A discussion of meaningful...

Computational Nanoscience, Homework Assignment 3: Molecular Dynamics Simulation of Carbon Nanotubes
14 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
The purpose of this assignment is to perform molecular dynamics simulations to calculate various properties of carbon nanotubes using LAMMPS and Tersoff potentials.This assignment is to be completed following lectures 5 and 6 using the "LAMMPS" program in the Berkeley Computational Nanoscience...

Computational Nanoscience, Homework Assignment 2: Molecular Dynamics Simulation of a LennardJones Liquid
14 Feb 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
The purpose of this assignment is to perform a full molecular dynamics simulation based on the Verlet algorithm to calculate various properties of a simple liquid, modeled as an ensemble of identical classical particles interacting via the LennardJones potential.This assignment is to be...

Computational Nanoscience, Lecture 1: Introduction to Computational Nanoscience
13 Feb 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
In this lecture, we present a historical overview of computational science. We describe modeling and simulation as forms of "theoretical experiments" and "experimental theory". We also discuss nanoscience: "what makes nano nano?", as well as public perceptions of nanoscience and the "grey goo"...

Computational Nanoscience, Lecture 6: Pair Distribution Function and More on Potentials
13 Feb 2008   Contributor(s):: Jeffrey C Grossman, Elif Ertekin
In this lecture we remind ourselves what a pair distribution function is, how to compute it, and why it is so important in simulations. Then, we revisit potentials and go into more detail including examples of typical functional forms, relative energy scales, and what to keep in mind when...