
ABINIT: FirstTime User Guide
09 Jun 2009  Teaching Materials  Contributor(s): Benjamin P Haley
This firsttime user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We...
http://nanohub.org/resources/6874

Computational Nanoscience, Homework Assignment 1: Averages and Statistical Uncertainty
30 Jan 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
The purpose of this assignment is to explore statistical errors and data correlation.
This assignment is to be completed following lectures 1 and 2 using the "Average" program in the Berkeley...
http://nanohub.org/resources/3935

Computational Nanoscience, Homework Assignment 2: Molecular Dynamics Simulation of a LennardJones Liquid
14 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
The purpose of this assignment is to perform a full molecular dynamics simulation based on the Verlet algorithm to calculate various properties of a simple liquid, modeled as an ensemble of...
http://nanohub.org/resources/4052

Computational Nanoscience, Homework Assignment 3: Molecular Dynamics Simulation of Carbon Nanotubes
14 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
The purpose of this assignment is to perform molecular dynamics simulations to calculate various properties of carbon nanotubes using LAMMPS and Tersoff potentials.
This assignment is to be...
http://nanohub.org/resources/4054

Computational Nanoscience, Homework Assignment 4: HardSphere Monte Carlo and Ising Model
05 Mar 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this assignment, you will explore the use of Monte Carlo techniques to look at (1) hardsphere systems and (2) Ising model of the ferromagneticparamagnetic phase transition in twodimensions. ...
http://nanohub.org/resources/4134

Computational Nanoscience, Lecture 10: Brief Review, Kinetic Monte Carlo, and Random Numbers
25 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
We conclude our discussion of Monte Carlo methods with a brief review of the concepts covered in the three previous lectures. Then, the Kinetic Monte Carlo method is introduced, including...
http://nanohub.org/resources/4090

Computational Nanoscience, Lecture 11: Phase Transitions and the Ising Model
27 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we present an introduction to simulations of phase transitions in materials. The use of Monte Carlo methods to model phase transitions is described, and the Ising Model is given...
http://nanohub.org/resources/4122

Computational Nanoscience, Lecture 12: InClass Simulation of Ising Model
28 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
This is a two part lecture in which we discuss the spinspin correlation function for the the Ising model, correlation lengths, and critical slowing down. An inclass simulation of the 2D Ising...
http://nanohub.org/resources/4126

Computational Nanoscience, Lecture 13: Introduction to Computational Quantum Mechanics
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture we introduce the basic concepts that will be needed as we explore simulation approaches that describe the electronic structure of a system.
http://nanohub.org/resources/4491

Computational Nanoscience, Lecture 14: HartreeFock Calculations
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
A description of the HartreeFock method and practical overview of its application. This lecture is to be used in conjunction with the course toolkit, with the HartreeFock simulation module.
http://nanohub.org/resources/4498

Computational Nanoscience, Lecture 15: InClass Simulations: HartreeFock
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
Using a range of examples, we study the effect of basis set on convergence, the HartreeFock accuracy compared to experiment, and explore a little bit of molecular chemistry.
http://nanohub.org/resources/4503

Computational Nanoscience, Lecture 16: More and Less than HartreeFock
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In the lecture we discuss both techniques for going "beyond" HartreeFock in order to include correlation energy as well as techniques for capturing electronic structure effects while not having...
http://nanohub.org/resources/4505

Computational Nanoscience, Lecture 17: TightBinding, and Moving Towards Density Functional Theory
21 Mar 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
The purpose of this lecture is to illustrate the application of the TightBinding method to a simple system and then to introduce the concept of Density Functional Theory. The motivation to...
http://nanohub.org/resources/4164

Computational Nanoscience, Lecture 18.5: A Little More, and Lots of Repetition, on Solids
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
Here we go over again some of the basics that one needs to know and understand in order to carry out electronic structure, atomicscale calculations of solids.
http://nanohub.org/resources/4507

Computational Nanoscience, Lecture 18: Density Functional Theory and some Solid Modeling
21 Mar 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
We continue our discussion of Density Functional Theory, and describe the mostoften used approaches to describing the exchangecorrelation in the system (LDA, GGA, and hybrid functionals). We...
http://nanohub.org/resources/4166

Computational Nanoscience, Lecture 19: Band Structure and Some InClass Simulation: DFT for Solids
30 Apr 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this class we briefly review band structures and then spend most of our class on inclass simulations. Here we use the DFT for molecules and solids (Siesta) course toolkit. We cover a variety...
http://nanohub.org/resources/4510

Computational Nanoscience, Lecture 1: Introduction to Computational Nanoscience
13 Feb 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture, we present a historical overview of computational science. We describe modeling and simulation as forms of "theoretical experiments" and "experimental theory". We also discuss...
http://nanohub.org/resources/4045

Computational Nanoscience, Lecture 20: Quantum Monte Carlo, part I
15 May 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
This lecture provides and introduction to Quantum Monte Carlo methods. We review the concept of electron correlation and introduce Variational Monte Carlo methods as an approach to going beyond...
http://nanohub.org/resources/4564

Computational Nanoscience, Lecture 21: Quantum Monte Carlo, part II
15 May 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
This is our second lecture in a series on Quantum Monte Carlo methods. We describe the Diffusion Monte Carlo approach here, in which the approximation to the solution is not restricted by choice...
http://nanohub.org/resources/4566

Computational Nanoscience, Lecture 23: Modeling Morphological Evolution
15 May 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we present an introduction to modeling the morphological evolution of materials systems. We introduce concepts of coarsening, particlesize distributions, the...
http://nanohub.org/resources/4572