Support

Support Options

Submit a Support Ticket

 

Tags: course lecture

Resources (901-920 of 1143)

  1. ECE 495N Lecture 1: What Makes Current Flow?

    28 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/5345

  2. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and...

    http://nanohub.org/resources/5307

  3. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all...

    http://nanohub.org/resources/5210

  4. Lecture 1A: What and where is the resistance?

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at...

    http://nanohub.org/resources/5211

  5. Lecture 1B: What and where is the resistance?

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at...

    http://nanohub.org/resources/5248

  6. Lecture 2A: Quantum Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers...

    http://nanohub.org/resources/5263

  7. Lecture 2B: Quantum Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers...

    http://nanohub.org/resources/5268

  8. Lecture 3A: Spin Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...

    http://nanohub.org/resources/5269

  9. Lecture 3B: Spin Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...

    http://nanohub.org/resources/5270

  10. Lecture 4B: Energy Exchange and Maxwell’s Demon

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauer-like picture” where the Joule heating associated...

    http://nanohub.org/resources/5272

  11. Lecture 5A: Correlations and Entanglement

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using...

    http://nanohub.org/resources/5273

  12. Lecture 5B: Correlations and Entanglement

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using...

    http://nanohub.org/resources/5274

  13. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Discussion of scale Review of atomic structure Introduction to energy band model University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5242

  14. Illinois ECE 440 Solid State Electronic Devices, Lecture 4: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Energy Bands and Carriers Band gaps (lattice and temperature dependence) Band curvature Carrier effective mass University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5244

  15. Illinois ECE 440 Solid State Electronic Devices, Lecture 2: Crystal Lattices

    14 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Diamond (Si) and zinc blende (GaAs)crystal structures Crystal...

    http://nanohub.org/resources/5227

  16. Illinois MatSE 280 Introduction to Engineering Materials, Lecture 1: Materials: Their Properties and Failures

    14 Aug 2008 | Online Presentations | Contributor(s): Duane Douglas Johnson, Omar N Sobh

    "Because without materials, there is no engineering" In this lecture we will discuss the following: - Units of Length - Six Major Classes of Materials - Periodic Table of Elements -...

    http://nanohub.org/resources/5229

  17. MSE 640 Lecture 15: Theory of high resolutiion TEM, Part 1

    29 May 2008 | Online Presentations | Contributor(s): Eric Stach

    http://nanohub.org/resources/4641

  18. MSE 640 Lecture 14: Overview of Phase Contrast & High resolution TEM

    29 May 2008 | Online Presentations | Contributor(s): Eric Stach

    http://nanohub.org/resources/4640

  19. MSE 640 Lecture 13: Diffraction contrast imaging

    29 May 2008 | Online Presentations | Contributor(s): Eric Stach

    Weak beam dark field imaging, Simulation of diffraction contrast

    http://nanohub.org/resources/4639

  20. MSE 640 Lecture 12: Diffraction contrast imaging, Part 1

    29 May 2008 | Online Presentations | Contributor(s): Eric Stach

    Review: Planar faults, Strain fields -generally, Dislocations, Coherent precipitates

    http://nanohub.org/resources/4637

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.