
High Throughput DFT Calculation Resources
16 Jun 2017   Contributor(s):: Austin Jacob Zadoks, Karthik Guda Vishnu, Sam Reeve, David M Guzman, Alejandro Strachan
Python functions / libraries / other resources useful for running High Throughput (querybased) DFT calculations on nanoHUB

Introduction to Computational Modeling  Schrödinger Equation, Density Functional Theory (DFT), KohnSham Method, DFT Code SIESTA
16 Jun 2016   Contributor(s):: Lan Li
This instructional video is part 1 in a two part series. It provides anintroduction to computational modeling, including motivation for studyingthis topic. The Schrödinger Equation is reviewed and its relationship toDensity Functional Theory (DFT) is explained. The...

Introduction to Computational Modeling  Input Parameters for SIESTA Simulation
16 Jun 2016   Contributor(s):: Lan Li
This instructional video is part 2 in a two part series. It explains how to set up input parameters for the SIESTA simulation tool.

Molecular Exploration Tool
01 Aug 2014   Contributor(s):: Xueying Wang, nicolas onofrio, Alejandro Strachan, David M Guzman
The tool can display the molecule structures and run Lammps simulations.

Reproducing DFT calculations of Al2O3/GaAs interface structure and Fermi level pinning
20 Oct 2014   Contributor(s):: Alejandro Strachan
The goal of this resource is to demonstrate how to reproduce the results of the following research paper using the nanoMATERIALS SeqQuest DFT simulation tool on nanoHUB. In addition to reproducing the paper's results, users can run variations of the simulation to explore the...

OnlineSimulation tutorial and assignment: bonding curves in H2 and He2 molecules
18 Feb 2015   Contributor(s):: Alejandro Strachan
In this tutorial students will use density functional theory (DFT) calculations using the nanoHUB tool SeqQuest to study bonding in two simple molecules: H2 and He2. The tutorial shows how to compute energy as a function of bond distance and extract the equilibrium bond distance and bond...

OnlineSimulation tutorial and assignment: electronic structure and spin in O2 molecule
18 Feb 2015   Contributor(s):: Alejandro Strachan
In this tutorial students will use density functional theory (DFT) calculations using the nanoHUB tool SeqQuest to study the electronic structure and bonding in the O2 molecular. The tutorial shows how to predict the relaxed bond distance in O2 (i.e. minimum energy structure) both for...

OnlineSimulation tutorial and assignment: electronic structure and spin of the O atom
18 Feb 2015   Contributor(s):: Alejandro Strachan
In this tutorial students will use density functional theory (DFT) calculations using the nanoHUB tool SeqQuest to study the electronic structure of the oxygen atom. The tutorial shows how to compute energy for the spin 1 (triplet) and spin 0 (singlet) states and analyze the exchange...

Lecture 3: The Wigner Monte Carlo Method for Density Functional Theory
15 Nov 2014   Contributor(s):: Jean Michel D Sellier
In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method in the framework of density functional theory (DFT).

Energies and Lifetimes with ComplexScaling
02 Apr 2012   Contributor(s):: Daniel Lee Whitenack, Adam Wasserman
Calculate the resonance energies and lifetimes of a userdefined potential with a uniform complexscaling transformation.

Computational Investigation of Point Defect Formation and Migration in Nuclear Fuels
09 Feb 2012   Contributor(s):: Susan Sinnott
The stabilities of selected fission products are investigated as a function of stoichiometry in uranium oxide. The approach is density functional theory (DFT) that is used to calculate the incorporation and solution energies of solid and gaseous fission products at the anion and cation vacancy...

Density Functional Theory: A great physics success story
23 Feb 2012   Contributor(s):: Kieron Burke
Density functional theory began with the work of Thomas and Fermi, at about the same time as Schroedinger wrote his famous equation. I will explain in general terms what density functional theory is and describe some problems of current interest.

Tutorial 1: Atomistic Material Science  ab initio simulations of materials
25 Aug 2011   Contributor(s):: Alejandro Strachan
This lecture introduces first principles electronic structure calculations of materials properties.It describes the approximations made to the manybody Schrodinger equation in Hartree Fock and Density Functional Theory and numerical approximations used in computer simulations.

Additional Tutorials on Selected Topics in Nanotechnology
23 Mar 2011   Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja
Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

OPV: Time Domain Ab Initio Studies of OrganicInorganic Composites for Solar Cells
21 Jan 2011   Contributor(s):: Oleg Prezhdo
This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both DOEfunded Research Centers at Lawrence Berkeley National Laboratory.

OPV: First Principles Studies of the Electronic Structure of Organic Solids and Interfaces
20 Jan 2011   Contributor(s):: Sahar Sharifzadeh
This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both DOEfunded Research Centers at Lawrence Berkeley National Laboratory.

2010 NCN@Purdue Summer School: Electronics from the Bottom Up
20 Apr 2010 
Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

Tutorial 3: Materials Simulation by FirstPrinciples Density Functional Theory
14 Sep 2010   Contributor(s):: Umesh V. Waghmare
This twopart lecture will provide an introduction to firstprinciples density functional theory based methods for simulation of materials, with a focus on determination of interatomic force constants and vibrational spectra of nano structures and extended periodic materials.

Tutorial 3b: Materials Simulation by FirstPrinciples Density Functional Theory II
09 Sep 2010   Contributor(s):: Umesh V. Waghmare

Tutorial 3a: Materials Simulation by FirstPrinciples Density Functional Theory I
09 Sep 2010   Contributor(s):: Umesh V. Waghmare
This lecture provides an introduction to firstprinciples density functional theory based methods for simulation of materials, with a focus on determination of interatomic force constants and vibrational spectra of nanostructures and extended periodic materials.Outline:Phonons, soft...