Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

Online Presentations (141-160 of 249)

  1. ECE 606 Lecture 4: Solution of Schrodinger Equation

    04 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Time-independent Schrodinger Equation Analytical solution of toy problems Bound vs. tunneling states Conclusions Additional Notes: Numerical solution of Schrodinger Equation R....

    http://nanohub.org/resources/5756

  2. ECE 606 Lecture 3: Elements of Quantum Mechanics

    28 Jan 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Why do we need quantum physics Quantum concepts Formulation of quantum mechanics Conclusions R. F. Pierret, "Advanced Semiconductor Fundamentals", Modular Series on Solid State...

    http://nanohub.org/resources/5754

  3. ECE 606 Lecture 2: Geometry of Periodic Crystals

    28 Jan 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Volume & surface issues for BCC, FCC, Cubic lattices Important material systems Miller indices Conclusions Helpful software tool: Crystal Viewer in the ABACUS tool suite. R....

    http://nanohub.org/resources/5752

  4. ECE 606 Lecture 1: Introduction

    28 Jan 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Course information Current flow in semiconductors Types of material systems Classification of crystals

    http://nanohub.org/resources/5750

  5. Illinois ECE 440 Solid State Electronic Devices, Lecture 7: Temperature Dependence of Carrier Concentrations

    31 Dec 2008 | Online Presentations | Contributor(s): Eric Pop

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6090

  6. Illinois ECE 440 Solid State Electronic Devices, Lecture 6: Doping, Fermi Level, Density of States

    04 Dec 2008 | Online Presentations | Contributor(s): Eric Pop, Umair Irfan

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6000

  7. Illinois ECE 440 Solid State Electronic Devices, Lecture 1 Introduction

    26 Nov 2008 | Online Presentations | Contributor(s): Eric Pop

    Introduction to Solid State Electronic Devices University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5950

  8. ECE 606 Lecture 32: MOS Electrostatics I

    19 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    http://nanohub.org/resources/5894

  9. ECE 606 Lecture 26: Schottky Diode II

    19 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    http://nanohub.org/resources/5830

  10. ECE 612 Lecture 20: Broad Overview of Reliability of Semiconductor MOSFET

    14 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Guest lecturer: Muhammad A. Alam.

    http://nanohub.org/resources/5861

  11. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the...

    http://nanohub.org/resources/5697

  12. From density functional theory to defect level in silicon: Does the “band gap problem” matter?

    01 Oct 2008 | Online Presentations | Contributor(s): Peter A. Schultz

    Modeling the electrical effects of radiation damage in semiconductor devices requires a detailed description of the properties of point defects generated during and subsequent to irradiation....

    http://nanohub.org/resources/5495

  13. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Discussion of scale Review of atomic structure Introduction to energy band model University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5242

  14. Illinois ECE 440 Solid State Electronic Devices, Lecture 4: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Energy Bands and Carriers Band gaps (lattice and temperature dependence) Band curvature Carrier effective mass University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5244

  15. Illinois ECE 440 Solid State Electronic Devices, Lecture 2: Crystal Lattices

    14 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Diamond (Si) and zinc blende (GaAs)crystal structures Crystal...

    http://nanohub.org/resources/5227

  16. High-Aspect-Ratio Micromachining of Titanium: Enabling New Functionality and Opportunity in Micromechanical Systems Through Greater Materials Selection

    18 Jun 2008 | Online Presentations | Contributor(s): Masa Rao

    Traditionally, materials selection has been limited in high-aspect-ratio micromechanical applications, due primarily to the predominance of microfabrication processes and infrastructure dedicated...

    http://nanohub.org/resources/4743

  17. Silicon Spintronics

    04 Jun 2008 | Online Presentations | Contributor(s): Ian Appelbaum

    "Electronics" uses our ability to control electrons with electric fields via interaction with their fundamental charge. Because we can manipulate the electric fields within semiconductors, they...

    http://nanohub.org/resources/4492

  18. Nanoscale Opto Thermo Electric Energy Conversion Devices

    28 May 2008 | Online Presentations | Contributor(s): Ali Shakouri

    We review solid-state devices that allow direct conversion of heat into electricity. We describe fundamental and practical limits of conventional thermoelectric materials. Novel...

    http://nanohub.org/resources/4665

  19. Functionalized Nanomaterials at the Interface of Biology and Technology

    24 Apr 2008 | Online Presentations | Contributor(s): Dean Ho, NCLT administator

    Nanomaterials, such as block copolymeric membranes and nanodiamonds, can be engineered for a broad range of applications in energy and medicine. This presentation will highlight the relevance...

    http://nanohub.org/resources/3761

  20. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988