Support Options

Submit a Support Ticket

Home Tags devices Resources

Tags: devices


On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

Resources (261-280 of 301)

  1. Metal Oxide Nanowires: Synthesis, Characterization and Device Applications

    07 Mar 2006 | Online Presentations | Contributor(s): Jia Grace Lu

    Various metal oxide nanowires, such as ZnO, SnO2, Fe2O3, In2O3 and Ga2O3, have been synthesized by chemical vapor deposition method. Their structures and properties are characterized by TEM,...

  2. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow...

  3. Making the Tiniest and Fastest Transistor using Atomic Layer Deposition (ALD)

    13 Feb 2006 | Online Presentations | Contributor(s): peide ye

    Atomic layer deposition (ALD) is an emerging nanotechnology enables the deposit of ultrathin films, one atomic layer by one atomic layer. ALD provides a powerful, new capability to grow or regrow...

  4. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | Online Presentations | Contributor(s): Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our...

  5. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the...

  6. Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    Part II uses examples to illustrate how to build user-defined PDE systems in PROPHET.

  7. Nano-Scale Device Simulations Using PROPHET-Part I: Basics

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    Part I covers the basics of PROPHET, including the set-up of simulation structures and parameters based on pre-defined PDE systems.

  8. Nano-Scale Device Simulations Using PROPHET

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    These two lectures are aimed to give a practical guide to the use of a general device simulator (PROPHET) available on nanoHUB. PROPHET is a partial differential equation (PDE) solver that...

  9. Optimization of Transistor Design for Carbon Nanotubes

    20 Jan 2006 | Online Presentations | Contributor(s): Jing Guo

    We have developed a self-consistent atomistic simulator for CNTFETs. Using the simulator, we show that a recently reported high-performance CNTFET delivers a near ballistic on-current. The...

  10. Quantum Corrections for Monte Carlo Simulation

    05 Jan 2006 | Online Presentations | Contributor(s): Umberto Ravaioli

    Size quantization is an important effect in modern scaled devices. Due to the cost and limitations of available full quantum approaches, it is appealing to extend semi-classical simulators by...

  11. Designing Nanocomposite Materials for Solid-State Energy Conversion

    10 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    New materials will be necessary to break through today's performance envelopes for solid-state energy conversion devices ranging from LED-based solid-state white lamps to thermoelectric...

  12. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

  13. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | Online Presentations | Contributor(s): Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics...

  14. Designing Nanocomposite Thermoelectric Materials

    08 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    This tutorial reviews recent strategies for designing high-ZT nanostructured materials, including superlattices, embedded quantum dots, and nanowire composites. The tutorial highlights the...

  15. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

  16. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

  17. Wireless Integrated MicroSystems (WIMS): Coming Revolution in the Gathering of Information

    01 Sep 2005 | Online Presentations | Contributor(s): Kensall D. Wise

    Wireless integrated microsystems promise to become pervasive during the coming decade in applications ranging from health care and environmental monitoring to homeland security. Merging low-power...

  18. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I...

  19. Laser Cooling of Solids

    06 Oct 2005 | Online Presentations | Contributor(s): Massoud Kaviany

    Enhanced laser cooling of ion doped nanocrystalline powders (e.g., Yb3+: Y2O3) can be achieved by enhancing the anti-Stokes, off-resonance absorption, which is proportional to the three...

  20. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | Online Presentations | Contributor(s): David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device..., a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.