Support

Support Options

Submit a Support Ticket

 

Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

Resources (1-20 of 298)

  1. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | Workshops | Contributor(s): Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on...

    http://nanohub.org/resources/7113

  2. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    20 Jul 2011 | Workshops

    click on image for larger version Alumni Discussion Group: LinkedIn

    http://nanohub.org/resources/11699

  3. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the...

    http://nanohub.org/resources/980

  4. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | Online Presentations | Contributor(s): Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our...

    http://nanohub.org/resources/1012

  5. All-Spin Logic Devices

    19 Jul 2012 | Online Presentations | Contributor(s): Behtash Behinaein

    We propose a spintronic device that uses spin at every stage of its operation: input and output information are represented by the magnetization of nanomagnets which communicate...

    http://nanohub.org/resources/8412

  6. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

    http://nanohub.org/resources/513

  7. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    12 Mar 2013 | Papers | Contributor(s): Rafael Vargas-Bernal, Gabriel Herrera-Pérez, Ma. Elena Calixto-Olalde, Margarita Tecpoyotl-Torres

    The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical...

    http://nanohub.org/resources/17265

  8. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  9. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350

  10. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  11. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

  12. BJT Lab: h-Parameters Calculation Exercise

    07 Jul 2009 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    In this exercise students are required to obtain the appropriate input and output parameters to extract the small signal h-parameters in common-base configuration. Afterwards they need to derive...

    http://nanohub.org/resources/7037

  13. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | Online Presentations | Contributor(s): David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2632

  14. Chemical Modification of GaAs with TAT Peptide and Alkylthiol Self-Assembled Monolayers

    03 Aug 2006 | Online Presentations | Contributor(s): Hamsa Jaganathan

    The use of self-assembled monolayers (SAM) on semiconductors creates a basis for the design and creation of bioelectronics, such as biosensors. The interface between the surface and an organic...

    http://nanohub.org/resources/1670

  15. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | Online Presentations | Contributor(s): Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries,...

    http://nanohub.org/resources/9929

  16. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | Courses | Contributor(s): Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

    http://nanohub.org/resources/7180

  17. Control of Spin Precession in a Datta-Das Transistor Structure

    11 Apr 2011 | Online Presentations | Contributor(s): Hyun Cheol Koo

    Transistors Switch onto Spin Using the spin of an electron in addition to, or instead of, the charge properties is believed to have many benefits in terms of speed, power-cost, and integration...

    http://nanohub.org/resources/8057

  18. Design in the Nanometer Regime: Process Variation

    28 Nov 2006 | Online Presentations | Contributor(s): Kaushik Roy

    Scaling of technology over the last few decades has produced an exponential growth in computing power of integrated circuits and an unprecedented number of transistors integrated into a single....

    http://nanohub.org/resources/2018

  19. Design of CMOS Circuits in the Nanometer Regime: Leakage Tolerance

    28 Nov 2006 | Online Presentations | Contributor(s): Kaushik Roy

    The scaling of technology has produced exponential growth in transistor development and computing power in the last few decades, but scaling still presents several challenges. These two lectures...

    http://nanohub.org/resources/2023

  20. Designing Nanocomposite Materials for Solid-State Energy Conversion

    10 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    New materials will be necessary to break through today's performance envelopes for solid-state energy conversion devices ranging from LED-based solid-state white lamps to thermoelectric...

    http://nanohub.org/resources/832

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.