Support

Support Options

Submit a Support Ticket

 

Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

Resources (1-20 of 298)

  1. Drift-Diffusion Modeling and Numerical Implementation Details

    01 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This tutorial describes the constitutive equations for the drift-diffusion model and implementation details such as discretization and numerical solution of the algebraic equations that result...

    http://nanohub.org/resources/9092

  2. Illinois ECE 440: Introduction to Crystal Properties Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework Assignment covers basic introduction to Material Properties and Crystal Structures.

    http://nanohub.org/resources/8243

  3. Illinois ECE 440: Charge Carrier in Bulk Semiconductors Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers the effects of doping on carrier concentration in bulk silicon.

    http://nanohub.org/resources/8247

  4. Illinois ECE 440: Introduction to Carrier Drift and Mobility Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Carrier Transport in Semiconductors subjected to an electric field.

    http://nanohub.org/resources/8249

  5. Illinois ECE 440: Diffusion and Energy Band Diagram Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Diffusion of Carriers, Built-in Fields and Metal semiconductor junctions.

    http://nanohub.org/resources/8264

  6. Illinois ECE 440: MOS Capacitor Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Threshold Voltage, MOS Band Diagram, and MOS Capacitance-Voltage Analysis.

    http://nanohub.org/resources/8266

  7. Illinois ECE 440: MOS Field-Effect Transistor Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Output Characteristics and Mobility Model of MOSFETs.

    http://nanohub.org/resources/8268

  8. Illinois ECE 440: Carrier Generation and Recombination and photo-conductivity Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Optical Absorption, Excess Carrier Concentration, Steady State Carrier Generation, and Quasi-Fermi Levels.

    http://nanohub.org/resources/8270

  9. Illinois ECE 440: PN Junction Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers P-N junctions in equilibrium, contact potential, and Space Charge at a Junction.

    http://nanohub.org/resources/8274

  10. Illinois ECE 440: Photodiodes Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Current and Voltage in an Illuminated Junction, Solar Cells, and PN Junction Simulation.

    http://nanohub.org/resources/8276

  11. Self-Heating Effects in Nano-Scale Devices. What do we know so far ...

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska, Stephen M. Goodnick

    This presentation contains the research findings related to self-heating effects in nano-scale devices in silicon on insulator devices obtained at Arizona State University. Different device...

    http://nanohub.org/resources/7208

  12. From Semi-Classical to Quantum Transport Modeling: Particle-Based Device Simulations

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7214

  13. From Semi-Classical to Quantum Transport Modeling: Quantum Corrections to Semiclassical Approaches

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7216

  14. From Semi-Classical to Quantum Transport Modeling: Quantum Transport - Recursive Green's function method, CBR approach and Atomistic

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7220

  15. Tutorial for PADRE Based Simulation Tools

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This tutorial is intended for first time and medium level users of PADRE-based simulation modules installed on the nanohub. It gives clear overview on the capabilities of each tool with emphasis...

    http://nanohub.org/resources/7223

  16. MOSCAP: Theoretical Exercise - High Frequency CV Curves

    07 Jul 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    One is required to sketch the high frequency CV curves for different MOS Capacitors configurations.

    http://nanohub.org/resources/7039

  17. BJT Lab: h-Parameters Calculation Exercise

    07 Jul 2009 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    In this exercise students are required to obtain the appropriate input and output parameters to extract the small signal h-parameters in common-base configuration. Afterwards they need to derive...

    http://nanohub.org/resources/7037

  18. Resonant Tunneling Diode Simulation with NEGF: First-Time User Guide

    01 Jun 2009 | Teaching Materials | Contributor(s): Samarth Agarwal, Gerhard Klimeck

    This first-time user guide for Resonant Tunneling Diode Simulation with NEGF provides some fundamental concepts regarding RTDs along with details on how device geometry and simulation parameters...

    http://nanohub.org/resources/6791

  19. Piece-Wise Constant Potential Barriers Tool: First-Time User Guide

    01 Jun 2009 | Teaching Materials | Contributor(s): Samarth Agarwal, Gerhard Klimeck

    This supporting document for the Piece-Wise Constant Potential Barriers Tool serves as a first-time user guide. Some basic ideas about quantum mechanical tunneling are introduced in addition to...

    http://nanohub.org/resources/6794

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.