Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

All Categories (1-20 of 359)

  1. 09 Demonstration of Vertical GaN PN Diode with Step-etched Triple zone JTE

    14 Oct 2020 | | Contributor(s):: Hyun-Soo Lee, Yuxuan Zhang, Zhaoying Chen, Mohammad Wahidur Rahman, Hongping Zhao, Siddharth Rajan

    We have demonstrated significantly improved BV of vertical GaN PN diode with STJTE without any degradation of forward characteristics. This is the first demonstration of a step-etched multiple zone edge termination for III-Nitride technology.

  2. Jul 20 2009

    2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    Electronics from the Bottom Up seeks to bring a new perspective to engineering education -- one that is designed to help realize the opportunities of nanotechnology. Ever since the birth of...

    https://nanohub.org/events/details/231

  3. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | | Contributor(s):: Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on laboratory session will be available in the afternoons.

  4. 2010 NCN Annual Review S13: External Education - Cal Poly Pomona

    16 Jun 2010 | | Contributor(s):: Tanya Faltens

  5. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    20 Jul 2011 |

    click on image for larger versionAlumni Discussion Group: LinkedIn

  6. 39 Thermal Engineering of Volatile Switching in PrMnO3 RRAM: Non-Linearity in DC IV Characteristics and Transient Switching Speed

    21 Sep 2020 | | Contributor(s):: Jayatika Sakhuja, Sandip Lashkare, Vivek Saraswat, Udayan Ganguly

    This study is the first-time analysis of heating and cooling timescales together demonstrating voltage as well as frequency scaling for different voltage regimes w.r.t. different device stacks. Thus, an electro-thermal speed engineering study is critical for RRAM devices to model elements of...

  7. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | | Contributor(s):: Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the hood." This talk is a tutorial introduction designed for someone using semiconductor...

  8. A3 Crystalline Calcium Fluoride: A Record-Thin Insulator for Nanoscale 2D Electronics

    13 Sep 2020 | | Contributor(s):: Yury Yuryevich Illarionov, A.G. Banshchikov, Theresia Knobloch, D.K. Polyushkin, S. Wachter, V.V. Fedorov, M. Stöger-Pollach, M.I. Vexler, N.S. Sokolov, T. Grasser

    We fabricated high-quality crystalline 1−2nm CaF2 films and successfully used them for MoS2 FETs with record-thin gate insulators. For the first time we demonstrated MoS2 FETs with simultaneously sub-1nm EOT insulators and sub-100nm channel length and found that these devices can exhibit...

  9. Abhijith Prakash

    https://nanohub.org/members/35214

  10. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | | Contributor(s):: Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our recent research activities related to the fabrication of active photonic nanomaterials and the development...

  11. All-Spin Logic Devices

    08 Feb 2010 | | Contributor(s):: Behtash Behinaein

    We propose a spintronic device that uses spin at every stage of its operation: input and output information are represented by the magnetization of nanomagnets which communicate through spin-coherent channels. Based on simulations with an experimentally benchmarked model we argue that the device...

  12. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

  13. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    09 Mar 2013 | | Contributor(s):: Rafael Vargas-Bernal, Gabriel Herrera-Pérez, Ma. Elena Calixto-Olalde, Margarita Tecpoyotl-Torres

    The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to...

  14. Ashish Agrawal

    https://nanohub.org/members/28577

  15. Ashutosh Manohar

    https://nanohub.org/members/128102

  16. Atomic Force Microscopy

    01 Dec 2005 | | Contributor(s):: Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  17. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  18. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | | Contributor(s):: Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the semiconductor materials modeling community usually treats infinitely periodic structures. Two electronic...

  19. Auger Generation as an Intrinsic Limit to Tunneling Field-Effect Transistor Performance

    22 Sep 2016 | | Contributor(s):: Jamie Teherani

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society’s best hope for achieving a > 10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly...

  20. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.