Tags: device simulation

Papers (1-7 of 7)

  1. Electron Transport in Schottky Barrier CNTFETs

    24 Oct 2017 | | Contributor(s):: Igor Bejenari

    A given review describes models based on Wentzel-Kramers-Brillouin approximation, which are used to obtain I-V characteristics for ballistic CNTFETs with Schottky-Barrier (SB) contacts. The SB is supposed to be an exponentially or linearly decaying function along the channel. The ...

  2. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices

    28 Jun 2013 | | Contributor(s):: raseong kim

    For the past few decades, transistors have been continuously scaled. Dimensions are now at the nanoscale, and device performance has dramatically improved. Nanotechnology is also achieving breakthroughs in thermoelectrics, which have suffered from low efficiencies for decades. As the device scale...

  3. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    28 Jun 2013 | | Contributor(s):: Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed thechannel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes new challenges on device simulation as the essential physics of carrier transport departs that of...

  4. Two-Dimensional Scattering Matrix Simulations of Si MOSFET'S

    28 Jun 2013 | | Contributor(s):: Carl R. Huster

    For many years now, solid state device simulators have been based on the drift-diffusion equations. As transistor sizes have been reduced, there has been considerable concern about the predictive capability of these simulators. This concern has lead to the development of a number of simulation...

  5. Direct Solution of the Boltzmann Transport Equation in Nanoscale Si Devices

    28 Jun 2013 | | Contributor(s):: Kausar Banoo

    Predictive semiconductor device simulation faces a challenge these days. As devices are scaled to nanoscale lengths, the collision-dominated transport equations used in current device simulators can no longer be applied. On the other hand, the use of a better, more accurate Boltzmann Transport...

  6. Computational and Experimental Study of Transport in Advanced Silicon Devices

    28 Jun 2013 | | Contributor(s):: Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards to the BJT, we will compare and assess the solutions of a physically detailed microscopic model to...

  7. Landauer Approach to Thermoelectrics

    23 Jun 2013 | | Contributor(s):: Changwook Jeong

    Many efforts have been made to search for materials that maximize the thermoelectric (TE) figure of merit, ZT, but for decades, the improvement has been limited because of the interdependent material parameters that determine ZT. Recently, several breakthroughs have been reported by applying...