Tags: device simulations

Resources (1-20 of 24)

  1. Device Parameters Extraction Within Silvaco Simulation Software

    30 Jul 2011 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides explains the extract statements within SILVACO simulation software.

    http://nanohub.org/resources/11769

  2. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    20 Jul 2011 | Workshops

    click on image for larger version Alumni Discussion Group: LinkedIn

    http://nanohub.org/resources/11699

  3. Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Systems

    20 Jul 2011 | Online Presentations | Contributor(s): J. L. Gray

    Modeling and simulation play an important role in designing and optimizing PV systems. This tutorial is a broad overview of the topic including a look at detailed, numerical device simulation.

    http://nanohub.org/resources/11690

  4. Electron-Electron Interactions

    20 Jun 2011 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides describes the electron-electron interactions scattering rates calculations as it occurs in bulk materials, low-dimensional structures and semiconductor devices.

    http://nanohub.org/resources/11409

  5. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10751

  6. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

    http://nanohub.org/resources/10730

  7. Quantum Dot Wave Function (still image)

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10692

  8. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

    http://nanohub.org/resources/10689

  9. Electron Density in a Nanowire

    30 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Saumitra Raj Mehrotra

    Electron Density in a circular Silicon nanowire transistor.

    http://nanohub.org/resources/10666

  10. Tunneling in an Nanometer-Scaled Transistor

    25 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Mathieu Luisier, Neerav Kharche, George A. Howlett, Insoo Woo, David Ebert

    Electrons tunneling through the gate of an ultra-scaled transistor.

    http://nanohub.org/resources/10537

  11. Atomistic Simulations of Reliability

    06 Jul 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    Discrete impurity effects in terms of their statistical variations in number and position in the inversion and depletion region of a MOSFET, as the gate length is aggressively scaled, have...

    http://nanohub.org/resources/9253

  12. Illinois ECE 440 Solid State Electronic Devices, Lecture 20: P-N Diode in Reverse Bias

    18 Nov 2009 | Online Presentations | Contributor(s): Eric Pop

    Recap diode (forward, zero, reverse) bias diagrams. Recap some of the equations. University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/7690

  13. Tutorial for PADRE Based Simulation Tools

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This tutorial is intended for first time and medium level users of PADRE-based simulation modules installed on the nanohub. It gives clear overview on the capabilities of each tool with emphasis...

    http://nanohub.org/resources/7223

  14. Illinois ECE 440 Solid State Electronic Devices, Lecture 7: Temperature Dependence of Carrier Concentrations

    30 Dec 2008 | Online Presentations | Contributor(s): Eric Pop

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6090

  15. Illinois ECE 440 Solid State Electronic Devices, Lecture 6: Doping, Fermi Level, Density of States

    04 Dec 2008 | Online Presentations | Contributor(s): Eric Pop, Umair Irfan

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6000

  16. Real space first-principles semiempirical pseudopotentials for Fe/MgO/Fe

    03 Dec 2008 | Downloads | Contributor(s): Kirk H. Bevan

    A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling...

    http://nanohub.org/resources/5997

  17. ECE 612 Lecture 23: RF CMOS

    02 Dec 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) Introduction, 2) Small signal model, 3) Transconductance, 4) Self-gain, 5) Gain bandwidth product, 6) Unity power gain, 7) Noise, mismatch, linearity…, 8) Examples

    http://nanohub.org/resources/5961

  18. Illinois ECE 440 Solid State Electronic Devices, Lecture 1 Introduction

    26 Nov 2008 | Online Presentations | Contributor(s): Eric Pop

    Introduction to Solid State Electronic Devices University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5950

  19. From density functional theory to defect level in silicon: Does the “band gap problem” matter?

    01 Oct 2008 | Online Presentations | Contributor(s): Peter A. Schultz

    Modeling the electrical effects of radiation damage in semiconductor devices requires a detailed description of the properties of point defects generated during and subsequent to irradiation....

    http://nanohub.org/resources/5495

  20. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Discussion of scale Review of atomic structure Introduction to energy band model University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5242