Tags: device simulations

All Categories (21-32 of 32)

  1. Illinois ECE 440 Solid State Electronic Devices, Lecture 6: Doping, Fermi Level, Density of States

    04 Dec 2008 | | Contributor(s):: Eric Pop, Umair Irfan

  2. Real space first-principles semiempirical pseudopotentials for Fe/MgO/Fe

    03 Dec 2008 | | Contributor(s):: Kirk Bevan

    A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling approach.Document Abstract:We present a real space density functional theory (DFT) localized basis set...

  3. ECE 612 Lecture 23: RF CMOS

    02 Dec 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Introduction,2) Small signal model,3) Transconductance,4) Self-gain,5) Gain bandwidth product,6) Unity power gain,7) Noise, mismatch, linearity…,8) Examples

  4. Illinois ECE 440 Solid State Electronic Devices, Lecture 1 Introduction

    26 Nov 2008 | | Contributor(s):: Eric Pop

    Introduction to Solid State Electronic Devices

  5. From density functional theory to defect level in silicon: Does the “band gap problem” matter?

    01 Oct 2008 | | Contributor(s):: Peter A. Schultz

    Modeling the electrical effects of radiation damage in semiconductor devices requires a detailed description of the properties of point defects generated during and subsequent to irradiation. Such modeling requires physical parameters, such as defect electronic levels, to describe carrier...

  6. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | | Contributor(s):: Eric Pop

    Discussion of scaleReview of atomic structureIntroduction to energy band model

  7. Illinois ECE 440: Solid State Electronic Devices

    18 Aug 2008 | | Contributor(s):: Eric Pop

    The goals of this course are to give the student an understanding of the elements of semiconductor physics and principles of semiconductor devices that (a) constitute the foundation required for an electrical engineering major to take follow-on courses, and (b) represent the essential basic...

  8. Illinois ECE 440 Solid State Electronic Devices, Lecture 2: Crystal Lattices

    14 Aug 2008 | | Contributor(s):: Eric Pop

    Crystal Lattices:Periodic arrangement of atomsRepeated unit cells (solid-state)Stuffing atoms into unit cellsDiamond (Si) and zinc blende (GaAs)crystal structuresCrystal planesCalculating densities

  9. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  10. BJT Lab

    06 Feb 2008 | | Contributor(s):: Saumitra Raj Mehrotra, Abhijeet Paul, Gerhard Klimeck, Dragica Vasileska, Gloria Wahyu Budiman

    This tool simulates a Bipolar Junction Transistor (BJT) using a 2D mesh. Powered by PADRE.

  11. Podolskaya I. Natalie

    http://nanohub.org/members/17814

  12. Siyu Koswatta

    http://nanohub.org/members/3916