Support

Support Options

Submit a Support Ticket

 

Tags: diffusive transport

All Categories (1-20 of 28)

  1. 1-D Phonon BTE Solver

    28 Jul 2014 | Tools | Contributor(s): Joseph Adrian Sudibyo, Amr Mohammed, Ali Shakouri

    Simulate heat transport by solving one dimensional Boltzmann transport equation.

    http://nanohub.org/resources/1dphononbte

  2. ECE 656 Lecture 29: The BTE Revisited - Equilibrium and Ballistic

    05 Dec 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Quick review Equilibrium BTE Ballistic BTE Discussion Summary

    http://nanohub.org/resources/12500

  3. ECE 656 Lecture 13: Phonon Transport

    05 Oct 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electrons and Phonons General model for heat conduction Thermal conductivity Debye model Scattering Discussion Summary

    http://nanohub.org/resources/12174

  4. ECE 656 Lecture 8: More about Resistance

    03 Oct 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review Discussion power dissipation voltage drop n-type vs. p-type “apparent” mobility 1D and 3D resistors Graphene: A case study Summary

    http://nanohub.org/resources/12125

  5. ECE 656 Lecture 12: Scattering and Transmission

    30 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Physics of carrier scattering Transmission and mfp MFP and scattering Discussion Summary

    http://nanohub.org/resources/12136

  6. ECE 656 Lecture 5: Modes and Transmission

    16 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Modes Transmission Discussion Summary

    http://nanohub.org/resources/12082

  7. Lecture 3: Resistance-Ballistic to Diffusive

    28 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    The resistance of a ballistic conductor and concepts, such as the quantum contact resistance, are introduced and discussed. The results are then generalized to treat transport all the way from...

    http://nanohub.org/resources/11746

  8. ECE 656 Lecture 7: 2 and 3D Resistors

    27 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Another view of the same problem 2D resistors Discussion 3D resistors Summary

    http://nanohub.org/resources/7369

  9. ECE 656 Lecture 6: Discussion

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline Quantum confinement and effective mass Bulk 1D transport and mfp Periodic vs. Box boundary conditions Thermal velocities "Ballistic mobility"

    http://nanohub.org/resources/7368

  10. ECE 656 Lecture 5: 1D Resistors

    14 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review 1D ballistic resistors 1D diffusive resistors Discussion Summary

    http://nanohub.org/resources/7361

  11. ECE 659 Lecture 2: Molecular, Ballistic and Diffusive Transport

    21 Jan 2009 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6148

  12. Slides: Diffusive vs. ballistic transport

    08 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska

    www.eas.asu.edu/~vasilesk

    http://nanohub.org/resources/4951

  13. BJT Lab

    06 Feb 2008 | Tools | Contributor(s): Saumitra Raj Mehrotra, Abhijeet Paul, Gerhard Klimeck, Dragica Vasileska, Gloria Wahyu Budiman

    This tool simulates a Bipolar Junction Transistor (BJT) using a 2D mesh. Powered by PADRE.

    http://nanohub.org/resources/bjt

  14. CQT: Concepts of Quantum Transport

    30 Nov 2006 | Courses | Contributor(s): Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations on Nanoelectronics and the Meaning of Resistance. How does the resistance of a...

    http://nanohub.org/resources/2039

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.