Tags: Effective mass

Resources (1-11 of 11)

  1. PHYS 620 Lecture 7: Effective-Mass Theory, Landau Levels and Franz-Keldysh Oscillations

    19 Mar 2013 | | Contributor(s):: Roberto Merlin

  2. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | | Contributor(s):: Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

  3. Band Structure Lab: First-Time User Guide

    15 Jun 2009 | | Contributor(s):: Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck

    This document provides useful information about Band Structure Lab. First-time users will find basic ideas about the physics behind the tool such as band formation, the Hamiltonian description, and other aspects. Additionally, we provide explanations of the input settings and the results of the...

  4. ECE 606 Lecture 6: Energy Bands (continued)

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Properties of electronic bandsE-k diagram and constant energy surfacesConclusions

  5. Electronic band structure

    12 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes ranges of energy in which an electron is "forbidden" or "allowed". The band structure is also often called the dispersion or the E(k) relationship. It is a mathematical relationship between the...

  6. Periodic Potential Lab

    19 Jan 2008 | | Contributor(s):: Abhijeet Paul, Junzhe Geng, Gerhard Klimeck

    Solve the time independent schrodinger eqn. for arbitrary periodic potentials

  7. Periodic Potential Lab Demonstration: Standard Kroenig-Penney Model

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation of a 1D square well using the Periodic Potential Lab. The calculated output includes plots of the allowed energybands, a table of the band edges and band gaps, plots of reduced and expanded dispersion relations, and plots comparing the dispersion relations to...

  8. Periodic Potential Lab: First-Time User Guide

    05 Jun 2009 | | Contributor(s):: Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck, SungGeun Kim, Lynn Zentner

    This document provides guidance to first-time users of the Periodic Potential Lab tool. It offers basic information about solutions to the Schröedinger Equation in case of periodic potential in 1 dimension (1D). This document also contains suggested exercises to help users run the tool and...

  9. Quantum Theory of Electrons in Periodic Latices

    28 Jun 2011 | | Contributor(s):: Dragica Vasileska

    This set of handwritten notes is part of the semiconductor transport class. It describes the Bloch theorem, electrons in a crystal and the concept of effective mass.

  10. Semiconductor Device Education Material

    28 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are...

  11. Universal Behavior of Strain in Self-assembled Quantum Dots

    01 May 2016 | | Contributor(s):: Hesameddin Ilatikhameneh, Tarek Ahmed Ameen, Gerhard Klimeck, Rajib Rahman

    This resource contains the universal behavior strain files produced by Nemo5. Attached also a Matlab script that can utilize the these compact descriptive files to produce the full strain distribution.  Supported QD shapes; Cuboid, Dome, Cone, and Pyramid. Supported material systems;...