Support

Support Options

Submit a Support Ticket

 

Tags: Electrical and Optical properties

Resources (1-6 of 6)

  1. Illinois ECE 440 Solid State Electronic Devices, Lecture 1 Introduction

    26 Nov 2008 | Online Presentations | Contributor(s): Eric Pop

    Introduction to Solid State Electronic Devices University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5950

  2. Illinois ECE 440 Solid State Electronic Devices, Lecture 2: Crystal Lattices

    14 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Diamond (Si) and zinc blende (GaAs)crystal structures Crystal...

    http://nanohub.org/resources/5227

  3. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Discussion of scale Review of atomic structure Introduction to energy band model University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5242

  4. Illinois ECE 440 Solid State Electronic Devices, Lecture 4: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | Online Presentations | Contributor(s): Eric Pop

    Energy Bands and Carriers Band gaps (lattice and temperature dependence) Band curvature Carrier effective mass University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/5244

  5. Illinois ECE 440 Solid State Electronic Devices, Lecture 7: Temperature Dependence of Carrier Concentrations

    30 Dec 2008 | Online Presentations | Contributor(s): Eric Pop

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6090

  6. Molecular Foundry Photonics Toolkit

    13 May 2010 | Tools | Contributor(s): Alexander S McLeod, P. James Schuck, Jeffrey B. Neaton

    Simulate realistic 1, 2, or 3-dimension nano-optical systems using the FDTD method.

    http://nanohub.org/resources/photonicstk

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.