Support

Support Options

Submit a Support Ticket

 

Tags: electronic structure

Resources (1-5 of 5)

  1. Quantitative Modeling and Simulation of Quantum Dots

    18 Apr 2011 | Presentation Materials | Contributor(s): Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...

    http://nanohub.org/resources/9332

  2. OPV: Time Domain Ab Initio Studies of Organic-Inorganic Composites for Solar Cells

    31 Jan 2011 | Online Presentations | Contributor(s): Oleg Prezhdo

    This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both...

    http://nanohub.org/resources/10507

  3. OPV: First Principles Studies of the Electronic Structure of Organic Solids and Interfaces

    31 Jan 2011 | Online Presentations | Contributor(s): Sahar Sharifzadeh

    This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both...

    http://nanohub.org/resources/10488

  4. Berkeley GW

    27 Sep 2009 | Tools | Contributor(s): Alexander S McLeod, Peter Doak, Sahar Sharifzadeh, Jeffrey B. Neaton

    This is an educational tool that illustrates the calculation of the electronic structure of materials using many-body perturbation theory within the GW approximation

    http://nanohub.org/resources/berkeleygw

  5. SIESTA

    05 Mar 2008 | Tools | Contributor(s): Lucas Wagner, Jeffrey C Grossman, Joe Ringgenberg, daniel richards, Alexander S McLeod, Eric Isaacs, Jeffrey B. Neaton

    Use SIESTA to perform electronic structure calculations

    http://nanohub.org/resources/siesta

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.