Tags: FDTD

Description

Finite-difference time-domain (FDTD) is a computational technique for electrodynamics modeling. The FDTD method uses a grid-based differential time-domain numerical modeling method. Time-dependent Maxwell's equations (in partial differential form) are discretized into space and time partial derivatives. By stepping in time, the resulting finite-difference equations are solved for each spatial volume. First the electric field (E) vector components in each volume of space are solved at a given instant in time. The magnetic field (H) vector components in the same spatial volume are then solved at the next instant in time. The process is repeated until the desired transient or steady-state electromagnetic field behavior is fully evolved. For a more extensive description of FDTD see WIkipedia.

Learn more about FDTD and its uses from the resources on this site, listed below.

Tools (1-6 of 6)

  1. Photovoltaics QCRF-FDTD Simulator

    20 Nov 2015 | Tools | Contributor(s): Jacob R Duritsch, Haejun Chung, Peter Bermel

    Simulates optical and electrical behaviors of photovoltaic cells using a FDTD simulation method and QCRF material modeling.

    http://nanohub.org/resources/qcrf4photo

  2. MEEPPV

    29 Aug 2013 | Tools | Contributor(s): Xin Tze (Joyce) Tee, Haejun Chung, Peter Bermel

    Finite-difference Time-Domain Simulations for photovoltaic cells

    http://nanohub.org/resources/meeppv

  3. PhotonicsGAIN-0D

    12 Nov 2012 | Tools | Contributor(s): Jieran Fang, Ludmila Prokopeva, Jan Trieschmann, Nikita Arnold, Alexander V. Kildishev

    Time-domain numerical simulation of the local response of a generic four-level gain system to its excitation with a pump-probe pulse sequence.

    http://nanohub.org/resources/testgain0d

  4. Meep

    19 Oct 2012 | Tools | Contributor(s): Jing Ouyang, Xufeng Wang, Minghao Qi

    Finite-Difference Time-Domain Simulations

    http://nanohub.org/resources/Meep

  5. Molecular Foundry Photonics Toolkit

    31 Jan 2011 | Tools | Contributor(s): Alexander S McLeod, P. James Schuck, Jeffrey B. Neaton

    Simulate realistic 1, 2, or 3-dimension nano-optical systems using the FDTD method.

    http://nanohub.org/resources/photonicstk

  6. 90 Degrees Beam Propagation

    24 Jun 2008 | Tools | Contributor(s): Carlos Montalvo, Derrick Kearney, Jing Ouyang, Minghao Qi

    Calculation of beam propagation in dielectric waveguides

    http://nanohub.org/resources/BeamProp