Support

Support Options

Submit a Support Ticket

 

Tags: fermi level

Resources (1-12 of 12)

  1. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

    http://nanohub.org/resources/abacus

  2. BJT Lab

    06 Feb 2008 | Tools | Contributor(s): Saumitra Raj Mehrotra, Abhijeet Paul, Gerhard Klimeck, Dragica Vasileska, Gloria Wahyu Budiman

    This tool simulates a Bipolar Junction Transistor (BJT) using a 2D mesh. Powered by PADRE.

    http://nanohub.org/resources/bjt

  3. Carrier Statistics Lab Video Demonstration

    23 Sep 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra

    This video shows: Basic input deck for the tool, Simulation run of Temperature sweep with constant fermi level, Simulation run of Temperature sweep with constant doping.

    http://nanohub.org/resources/9758

  4. Discussion Session 1 (Lectures 1a, 1b and 2)

    08 Sep 2010 | Online Presentations | Contributor(s): Supriyo Datta

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and the...

    http://nanohub.org/resources/9651

  5. ECE 606 Lecture 13a: Fermi Level Differences for Metals and Semiconductors

    16 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Short chalkboard lecture on Fermi level and band diagram differences for metals and semiconductors.

    http://nanohub.org/resources/6288

  6. ECE 656 Lecture 12: Scattering and Transmission

    30 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Physics of carrier scattering Transmission and mfp MFP and scattering Discussion Summary

    http://nanohub.org/resources/12136

  7. Exercise: MATLAB Tool Construction for Degenerate/Nondegenerate Semiconductors That Includes Partial Ionization of the Dopants

    29 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the students how to calculate Ec-Ef from charge neutrality for general Fermi-Dirac statistics and compensated semiconductors. As such it then allows the student to calculate...

    http://nanohub.org/resources/5146

  8. Illinois ECE 440 Solid State Electronic Devices, Lecture 12: Quasi-Fermi Levels; Photoconductivity

    05 Jan 2009 | Online Presentations | Contributor(s): Eric Pop

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6104

  9. Illinois ECE 440 Solid State Electronic Devices, Lecture 6: Doping, Fermi Level, Density of States

    04 Dec 2008 | Online Presentations | Contributor(s): Eric Pop, Umair Irfan

    University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

    http://nanohub.org/resources/6000

  10. Lecture 1b: Nanotransistors - A Bottom Up View

    20 Jul 2010 | Online Presentations | Contributor(s): Mark Lundstrom

    MOSFET scaling continues to take transistors to smaller and smaller dimensions. Today, the MOSFET is a true nanoelectronic device – one of enormous importance for computing, data storage, and for...

    http://nanohub.org/resources/9344

  11. Semiconductor Device Education Material

    28 Jan 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic...

    http://nanohub.org/resources/edu_semi

  12. Thermoelectric Power Factor Calculator for Superlattices

    18 Oct 2008 | Tools | Contributor(s): Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using Non-Equilibrium Green's Functions

    http://nanohub.org/resources/slpf

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.