Tags: GaAs

Online Presentations (1-5 of 5)

  1. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | | Contributor(s):: Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the semiconductor materials modeling community usually treats infinitely periodic structures. Two electronic...

  2. Comparison of PCPBT Lab and Periodic Potential Lab

    10 Aug 2009 | | Contributor(s):: Abhijeet Paul, Samarth Agarwal, Gerhard Klimeck, Junzhe Geng

    This small presentation provides information about the comparison performed for quantum wells made of GaAs and InAs in two different tools. This has been done to benchmark the results from completely two different sets of tools and validate the obtained results. In this presentation we provide...

  3. Epitaxial Strategies for High Power Optically Pumped Vertical External Cavity Surface Emitting Lasers and Metamorphic Antimonide Solar Cells

    05 Dec 2016 | | Contributor(s):: Ganesh Balakrishnan

    We present antimonide-based photovoltaic cells grown on GaAs and Silicon substrates for use as sub-cells in metamorphic multi-junction solar cells. These antimonide cells, based on GaSb, are designed to absorb near-infrared photons. The GaSb layer is grown on either GaAs or Silicon substrates.

  4. Equipment, Techniques, and Growth of Ultra-High Purity AlGaAs-GaAs Heterostructures by Molecular Beam Epitaxy

    26 May 2017 | | Contributor(s):: Geoff Gardner

    In this talk I detail research and investigation into critical equipment and materials engineering issues related to the quality of the fabricated 2DEG systems. I also will present data that demonstrates the critical role gallium purity plays in 2DEG mobility.

  5. Why quantum dot simulation domain must contain multi-million atoms?

    11 Jan 2013 | | Contributor(s):: Muhammad Usman

    The InGaAs quantum dots obtained from the self-assembly growth process are heavily strained. The long-range strain and piezoelectric fields significantly modifies the electronic structure of the quantum dots. This imposes a critical constraint on the minimum size of the simulation domain to...