
Heat Conduction in a Slab X55T0 and Subcases
05 Mar 2014   Contributor(s):: Donald E. Amos
A slab is heated on both faces with known fluxes which are partly dissipated by conduction into the slab, partly lost to the exterior media, and partly stored in a boundary layer with only heat capacity. This description of each boundary condition is known as a Type 5 condition and in the...

Theory of Heat Conduction with Type 5 Boundary Condition
19 Feb 2014   Contributor(s):: Donald E. Amos
In the classical theory, the general solution of the heat conduction problem is expressed in terms of the Green's function. Terms which take into account volumetric heat generation, an initial temperature distribution and boundary conditions can be identified. In the current literature (...

Green's Function For Radial Heat Conduction in TwoRegion Composite Cylinders With Perfect Boundary Contact
20 Mar 2013   Contributor(s):: Donald E. Amos
This paper presents the derivation of the Green's function for composite cylinders 0<r<a and r>a in perfect contact on the surface r=a. Because the source function can be in either region, there are two pairs of functions which define the Green's function. Each pair is the solution to a...

1D Green's Functions For Heat Conduction Between Semiinfinite Slabs With Perfect and Imperfect Boundary Contact
17 Jan 2013   Contributor(s):: Donald E. Amos
This document presents two derivations for 1D Green's functionsfor semiinfinite slabs in contact along the boundary x=0. The case ofimperfect contact with a heat transfer coefficient h is derived and the caseof perfect contact is obtained by taking h to infinity. The two dimensionalcase with...

Theory of Heat Conduction for Two Region Problems Using Green's Functions
03 Apr 2012   Contributor(s):: Donald E. Amos
This paper derives equations which describe transient temperature distributions in adjacent regions which share a common boundary. These regions consist of materials with distinct, constant physical properties. The theory is developed for two types of boundary contact. The first formula is...

Green's Functions For Heat Conduction in Adjacent Materials
11 Mar 2012   Contributor(s):: Donald E. Amos
This paper considers classical linear, transient heat conduction problems set in Regions 1 and 2 defined by the half planes x>0 and x

Transient Heat Conduction in Adjacent Quadrants Separated by a Thermal Resistance
19 Jan 2012   Contributor(s):: Donald E. Amos, James Vere Beck, Filippo de Monte
Abstract Two linear, transient heat conduction problems set in quadrants 1 and 2 of the (x,y) plane are solved. In each problem, the quadrants have distinct, constant physical properties and are separated by an infinitely thin thermal resistance along the yaxis. Each region is initially at zero...

Carslaw and Jaeger solutions cataloged using the Beck and Litkouhi heat conduction notation
07 Nov 2011   Contributor(s):: James Vere Beck, Greg Walker
The analytical solutions of Carslaw and Jaeger arecataloged using the Beck and Litkouhi heat conduction notation.This document was contributed by James V. Beck and Elaine P. Scott.Heat Conduction Using Green's Functions, J. Beck, K. Cole, A. HajiSheikh, and B. Litkouhi, Hemisphere, 1992

Transient Heat Conduction in Adjacent Materials Heated on Part of the Common Boundary
01 Nov 2011   Contributor(s):: Donald E. Amos
This paper considers a classical linear, transient heat conduction problem set in Regions 1 and 2 defined by the half planes x>0 and x

Donald E. Amos
http://nanohub.org/members/59706

Analytic conduction solutions
01 Sep 2011   Contributor(s):: Greg Walker, James Vere Beck
Highprecision analytic conduction in parallelepipeds using Green's functions

Lecture 9: Introduction to Phonon Transport
17 Aug 2011   Contributor(s):: Mark Lundstrom
This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.