Tags: Illinois

Resources (181-200 of 1074)

  1. [Illinois] Stiff Polymer Assemblies

    18 Aug 2015 | | Contributor(s):: Alan Rowan

  2. [Illinois] New Insights into Some Principles of Self-Assembly

    18 Aug 2015 | | Contributor(s):: Erik Luijten

  3. [Illinois] Knowledge, Context, and Process: Building a Foundational Infrastructure for Engineering Cells for Use in an Uncertain World

    18 Aug 2015 | | Contributor(s):: Adam Arkin

    Both natural and synthetically augmented organisms, like those engineered to produce advanced biofuels, ultimately have to operate in an uncertain world. Resources change, contact with other life, and yield surprising interactions, and in some cases, changes in one’s own genetic code lead...

  4. [Illinois] Integration of Quantum Dot Nanoparticles with Multimodal Microspheres for PET and Cerenkov Luminescene Imaging of Cancer

    18 Aug 2015 | | Contributor(s):: Joanne Li

    Cerenkov luminescence (CL) imaging utilizes the photons emitted during radioactive decay when charged particles travel faster than the phase velocity of light in a dielectric medium. In this talk, I will present a novel agent to convert and increase CL emission at longer wavelengths using...

  5. [Illinois] Diffraction and Beyond: Thin Film Analysis by X-Ray Scattering with a Multipurpose Diffractometer

    18 Aug 2015 | | Contributor(s):: Scott Speakman

  6. Optimal Order Multigrid Preconditioners for Linear Systems Arising in the Semismooth Newton Method Solution Process of a Class of Control-Constrained Problems

    18 Aug 2015 | | Contributor(s):: Andrei Draganescu

    In this work we present a new multigrid preconditioner for the linear systems arising in the semismooth Newton method solution process of certain control-constrained, quadratic distributed optimal control problems. Using a piecewise constant discretization of the control space, each semismooth...

  7. Multilevel Solvers for High Resolution Electric Field Calculations

    18 Aug 2015 | | Contributor(s):: Andrew Reisner

    High fidelity electric field calculations are a critical component in plasma simulations. In this this talk we consider the problem of a dielectric barrier discharge (DBD) wherein the electric field is calculated to support a compressible flow, thus requiring a highly efficient global solve. The...

  8. Iterative Solution Method for an Implicit Orbit Averaged Particle-in-Cell Model

    18 Aug 2015 | | Contributor(s):: Benjamin Sturdevant

    Present kinetic simulations of turbulence in magnetized plasmas employ models from gyrokinetic theory, which is based on a number of ordering assumptions used to reduce the Vlasov-Maxwell system to eliminate high frequency phenomena. Recently, a second order accurate, implicit particle-in-cell...

  9. MSE 498: Computational Materials Science and Engineering

    30 Mar 2015 | | Contributor(s):: Andrew Ferguson

          This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g.,...

  10. MSE 498 Lesson 4: bash and MATLAB

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  11. MSE 498 Lesson 5: MATLAB

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  12. MSE 498 Lesson 6: DFT

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  13. MSE 498 Lesson 7: DFT

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  14. MSE 498 Lesson 8: DFT

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  15. MSE 498 Lesson 9: DFT

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  16. MSE 498 Lesson 10: MD

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  17. MSE 498 Lesson 11: MD

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  18. MSE 498 Lesson 12: MD

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  19. MSE 498 Lesson 13: MD

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  20. MSE 498 Lesson 14: MD

    17 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...