Tags: Illinois

All Categories (81-100 of 1055)

  1. On the Preconditioning of a High-Order RDG-based All-Speed Navier-Stokes Solver

    04 Feb 2016 | | Contributor(s):: Brian Weston

    We investigate the preconditioning of an all-speed Navier-Stokes solver, based on the orthogonal-basis Reconstructed Discontinuous Galerkin (RDG) space discretization, and integrated using a high-order fully-implicit time discretization method. The work is motivated by applications in Additive...

  2. Parallel Multigrid Preconditioner Based on Automatic 3D Tetradedric Meshes

    04 Feb 2016 | | Contributor(s):: Frederic Vi

    Multigrid methods are efficient for solving large sparse linear systems. Geometric (GMG) and Algebraic Multigrid (AMG) have both their own benefits and limitations. Combining the simplicity of AMG with the efficiency of GMG lead us to the development of an Hybrid Multigrid preconditionner. From...

  3. Reducing Communication Costs for Sparse Matrix Multiplication within Algebraic Multigrid

    04 Feb 2016 | | Contributor(s):: Grey Ballard

    We consider the sequence of sparse matrix-matrix multiplications performed during the setup phase of algebraic multigrid. In particular, we show that the most commonly used parallel algorithm is often not the most communication-efficient one for all of the matrix multiplications involved. By...

  4. Seventeenth Copper Mountain Conference on Multigrid Methods

    04 Feb 2016 |

    HIGHLIGHTED TOPICSUncertainty QuantificationOptimization and Inverse ProblemsData Mining, Large Graphs, and Markov ChainsNonsymmetric and Indefinite ProblemsKrylov AcceleratorsHybrid Direct-Iterative Linear SolversParallel Multigrid on Multicore Systems and Heterogeneous ArchitecturesTime...

  5. Space-time constrained FOSLS with AMGe upscaling

    04 Feb 2016 | | Contributor(s):: Panayot Vassilevski

    We consider time-dependent PDEs discretized in combined space-time domains. We first reduce the PDE to a first order system. Very often in practice, one of the equations of the reduced system involves the divergence operator (in space-time). The popular FOSLS (first order system least-squares)...

  6. Stable Discretizations and Robust Block Preconditioners for Fluid-Structure Interaction Systems

    04 Feb 2016 | | Contributor(s):: Kai Yang

    In our work we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian-Eulerian discretization of some fluid-structure interaction models. After the time discretization, we formulate the fluid-structure interaction equations as saddle point...

  7. Support Graph Smoothing Techniques

    04 Feb 2016 | | Contributor(s):: Alyson Fox

    Many tasks in large-scale network analysis and simulation require efficient approximation of the solution to the linear system $ Lx=b$, where $ L$ is a graph Laplacian. However, due to the large size and complexity of scale-free graphs, standard iterative methods do not perform optimally. The...

  8. Task-Graph and Functional Programming Models: The New Paradigm

    04 Feb 2016 | | Contributor(s):: Ben Bergen

    The Message Passing Interface (MPI) is an example of a distributed-memory communication model that has served us well through the CISC processor era. However, because of MPI's low-level interface, which requires the user to manage raw memory buffers, and its bulk-synchronous communication...

  9. Understanding the Propagation of Silent Data Corruption in Algebraic Multigrid

    04 Feb 2016 | | Contributor(s):: Jon Calhoun

    Sparse linear solvers from a fundamental kernel in high performance computing (HPC). Exascale systems are expected to be more complex than systems of today being composed of thousands of heterogeneous processing elements that operate at near-threshold-voltage to meet power constraints. The...

  10. [Illinois] CNST Nanotechnology Workshop 2015

    04 Feb 2016 | | Contributor(s):: Mustafa El-sayed, Mehmet Toner

    The CNST Nanotechnology Workshop highlights University of Illinois research in bionanotechnology and nanomedicine, nanoelectronics and nanophotonics, and nanomaterials and nanomanufacturing, leading to cross-campus and industry collaborations.

  11. [Illinois] Nanotechnology meets Biology in the Cancer Cell: Applications in Medicine, Drug Delivery, and Determining Drug Efficacy

    04 Feb 2016 | | Contributor(s):: Mostafa El-Sayed

  12. [Illinois] Rare Events with Large-Impact: Bioengineering & Clinical Applications of Circulating Tumor Cells

    04 Feb 2016 | | Contributor(s):: Mehmet Toner

  13. [Illinois] Signal Processing at Light Speed: Ultrashort Optical Pulse Generation with Arbitrary Waveforms

    29 Jan 2016 | | Contributor(s):: Claire Mcghee

    We aim to further improve early detection of cancer biomarkers, including metal ion and small molecules, using functional DNA as the selective component for photonic crystal surface enhanced Raman scattering (PC-SERS) based detection. It is known that gold nanoparticles (AuNPs) display SERS...

  14. [Illinois] Using Photonic Crystals to Enhance SERS Signals for Early Detection of Prostate Cancer

    29 Jan 2016 | | Contributor(s):: Caitlin Race

    Prostate cancer is the second most common cancer for men, and the second leading cause of death due to cancer in men. Currently, the most common screening method aims to detect high levels of prostate-specific antigen (PSA) in blood. Our research has shown the potential for both better prostate...

  15. [Illinois] Bionanotechnology Seminar Series

    29 Jan 2016 |

    This series is organized by PhD students who are appointed as Trainees in the NIH/NCI Midwest Cancer Nanotechnology Training Center (M-CNTC) and in the NSF IGERT in Cellular and Molecular Mechanics and BioNanotechnology (CMMB IGERT). These traineeships are designed to train the next generation...

  16. [Illinois] Cadherin-Modulated Neural Differentiation of Stem Cells for Neuromuscular Junction Engineering

    29 Jan 2016 | | Contributor(s):: Ellen Qin

    Recently, efforts are increasingly made to engineer NMJ in vitro for both fundamental and applied bioscience studies. Certain success was made to modulate neural differentiation of stem cells using soluble factors and cell adhesion matrix properties. However, these studies were often plagued by...

  17. [Illinois] Manipulating Substrate Topography for Enhanced Myogenic Differentiation of Primary Myoblasts and Neuromuscular Junction Formation

    29 Jan 2016 | | Contributor(s):: Eunkyung Ko

    Myogenic commitment of stem cells and primary myoblasts has drawn attention for developing treatments for skeletal muscle diseases. Biophysical cues as well as biochemical cues are known to influence the cellular mechanism of the myogenic differentiation event. Recent studies have revealed that...

  18. [Illinois] Role for Stiffness in Vascular Fate

    29 Jan 2016 | | Contributor(s):: Lian Wong

    Stem cells, including embryonic stem cells (ESC) and induced pluripotent stem cells, have been explored as tools for studying development, as well as, potential sources for a large number of therapies in regenerative medicine. Traditionally, ESC are cultured on TC-plastic, however; it has been...

  19. [Illinois] Dimeric Trigger Responsive Drug Conjugate for High Loading Nanoencapsulates

    26 Jan 2016 | | Contributor(s):: kaimin Cai

    Polymeric micelle is one of the most widely used drug delivery nanomedicine platforms; however, micelle drug delivery systems usually have very low drug loading and poorly defined composition, which greatly limited its further clinical translation. In the course of developing trigger responsive...

  20. [Illinois] Stretch Induced Hyperexcitability of Mice Callosal Pathway

    26 Jan 2016 | | Contributor(s):: Anthony Fan

    Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is...