Support

Support Options

Submit a Support Ticket

 

Tags: InAs

Resources (1-11 of 11)

  1. Comparison of PCPBT Lab and Periodic Potential Lab

    10 Aug 2009 | Online Presentations | Contributor(s): Abhijeet Paul, Samarth Agarwal, Gerhard Klimeck, Junzhe Geng

    This small presentation provides information about the comparison performed for quantum wells made of GaAs and InAs in two different tools. This has been done to benchmark the results from...

    http://nanohub.org/resources/7201

  2. Electronic band structure

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes ranges of energy in which an electron is "forbidden" or "allowed". The band structure is...

    http://nanohub.org/resources/8814

  3. Exploring New Channel Materials for Nanoscale CMOS

    28 Jun 2013 | Papers | Contributor(s): Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the...

    http://nanohub.org/resources/18738

  4. InAs: Evolution of iso-energy surfaces for heavy, light, and split-off holes due to uniaxial strain.

    25 May 2010 | Animations | Contributor(s): Abhijeet Paul, Denis Areshkin, Gerhard Klimeck

    Movie was generated using Band Structure Lab tool at nanoHUB and allows to scan over four parameters: Hole energy measured from the top of the corresponding band (i.e. the origin of energy...

    http://nanohub.org/resources/9016

  5. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    25 Oct 2011 | Online Presentations | Contributor(s): Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work,...

    http://nanohub.org/resources/12312

  6. Quantitative Modeling and Simulation of Quantum Dots

    18 Apr 2011 | Presentation Materials | Contributor(s): Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...

    http://nanohub.org/resources/9332

  7. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10751

  8. Quantum Dot Wave Function (still image)

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10692

  9. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

    http://nanohub.org/resources/10730

  10. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

    http://nanohub.org/resources/10689

  11. Why quantum dot simulation domain must contain multi-million atoms?

    11 Jan 2013 | Online Presentations | Contributor(s): Muhammad Usman

    The InGaAs quantum dots obtained from the self-assembly growth process are heavily strained. The long-range strain and piezoelectric fields significantly modifies the electronic structure of the...

    http://nanohub.org/resources/16192

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.