Support

Support Options

Submit a Support Ticket

 

Tags: kronig-penney

Resources (1-13 of 13)

  1. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

    http://nanohub.org/resources/abacus

  2. ABACUS Exercise: Bandstructure – Kronig-Penney Model and Tight-Binding Exercise

    20 Jul 2010 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    The objective of this exercise is to start with the simple Kronig-Penney model and understand formations of bands and gaps in the dispersion relation that describes the motion of carriers in 1D...

    http://nanohub.org/resources/9372

  3. Comparison of PCPBT Lab and Periodic Potential Lab

    10 Aug 2009 | Online Presentations | Contributor(s): Abhijeet Paul, Samarth Agarwal, Gerhard Klimeck, Junzhe Geng

    This small presentation provides information about the comparison performed for quantum wells made of GaAs and InAs in two different tools. This has been done to benchmark the results from...

    http://nanohub.org/resources/7201

  4. ECE 595E Lecture 10: Solving Quantum Wavefunctions

    01 Feb 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Monday Schrodinger’s equation Infinite & Finite Quantum Wells Kronig-Penney model Numerical solutions: Real space Fourier space

    http://nanohub.org/resources/16653

  5. ME 597 Lecture 2: Electron States in Solids-Density of States

    09 Sep 2009 | Online Presentations | Contributor(s): Ron Reifenberger

    Note: This lecture has been revised since its original presentation. Topics: Electron States in Solids – Bloch Functions Kronig-Penney Model Density of States

    http://nanohub.org/resources/7343

  6. Nanoelectronic Modeling Lecture 14: Open 1D Systems - Formation of Bandstructure

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Dragica Vasileska

    The infinite periodic structure Kroenig Penney model is often used to introduce students to the concept of bandstructure formation. It is analytically solvable for linear potentials and shows...

    http://nanohub.org/resources/8197

  7. Periodic Potential Lab

    19 Jan 2008 | Tools | Contributor(s): Abhijeet Paul, Junzhe Geng, Gerhard Klimeck

    Solve the time independent schrodinger eqn. for arbitrary periodic potentials

    http://nanohub.org/resources/kronig_penney

  8. Periodic Potential Lab Demonstration: Standard Kroenig-Penney Model

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation of a 1D square well using the Periodic Potential Lab. The calculated output includes plots of the allowed energybands, a table of the band edges and band gaps,...

    http://nanohub.org/resources/6839

  9. Periodic Potential Lab Worked Examples

    11 Apr 2011 | Teaching Materials | Contributor(s): SungGeun Kim, Abhijeet Paul, Gerhard Klimeck, Lynn Zentner, Benjamin P Haley

    Worked Examples for Periodic Potential Lab

    http://nanohub.org/resources/11125

  10. Periodic Potential Lab: First-Time User Guide

    07 Jun 2009 | Teaching Materials | Contributor(s): Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck, SungGeun Kim, Lynn Zentner

    This document provides guidance to first-time users of the Periodic Potential Lab tool. It offers basic information about solutions to the Schröedinger Equation in case of periodic potential...

    http://nanohub.org/resources/6855

  11. Periodic Potentials and the Kronig-Penney Model

    01 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska

    This material describes the derivation of the Kronig-Penney model for delta-function periodic potentials.

    http://nanohub.org/resources/4847

  12. Periodic Potentials Exercise

    16 Jun 2010 | Teaching Materials | Contributor(s): Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska

    In this exercise, various calculations of the electronic band structure of a one-dimensional crystal are performed with the Kronig-Penney (KP) model. This model has an analytical solution and...

    http://nanohub.org/resources/9195

  13. Slides: Kronig-Penney Model Explained

    08 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

    http://nanohub.org/resources/4959

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.