Tags: materials

Resources (1-20 of 109)

  1. 2004 Computational Materials Science Summer School

    29 Aug 2005

    This short course will explore a range of computational approaches relevant for nanotechnology.

  2. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  3. ABINIT: First-Time User Guide

    09 Jun 2009 | | Contributor(s):: Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We discuss the default simulation (what happens if you don't change any inputs, and just hit "simulate") as...

  4. AIDA: A tool for exhaustive enumeration of solutions to the quantized Frank-Bilby equation

    05 Jan 2018 | | Contributor(s):: Ali Sangghaleh, Michael J. Demkowicz

    We present a tool called Arrangement of Interface Dislocation Arrays (AIDA) for enumerating all dislocation networks that satisfy the quantized Frank-Bilby equation for any interface between cubic crystals with a single-atom basis, i.e. FCC/FCC, BCC/BCC, and FCC/BCC interfaces. The set of...

  5. Band Structure Lab Demonstration: Bulk Strain

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

  6. Buckypaper

    16 Apr 2013 | | Contributor(s):: shaheen goel

    the presentation gives a basic idea about the buckypaper and give breif details about the synthesis properties and applications of buckypaper

  7. Clustermag

    07 Jun 2008 | | Contributor(s):: Eldad Tamman

    Simulate clusters configurations of nanomagnets

  8. CNDO/INDO

    09 Oct 2007 | | Contributor(s):: Baudilio Tejerina, Jeff Reimers

    Semi-empirical Molecular Orbital calculations.

  9. DragonflyTV Nano – Using the Power of Television to Introduce Middle School Children to Nanotechnology

    15 Jan 2009 | | Contributor(s):: Richard Hudson, Joan Freese, Angie Prindle, Lisa Regalla

    DragonflyTV is a PBS science series for children, broadcast nationwide and on the internet. DragonflyTV models authentic science inquiry through its unique approach: In each episode, ordinary kids conduct their own inquiry-based investigations, modeling the inquiry process and communicating the...

  10. Exascale Co-design for Materials in Extreme Environments: Heterogeneous Algorithms for Heterogeneous Architectures

    30 May 2012 | | Contributor(s):: Timothy C. Germann

    Computational materials scientists have been among the earliest and heaviest users of leadership-class supercomputers. The codes and algorithms which have been developed span a wide range of physical scales and have been useful not only for gaining scientific insight, but also as testbeds for...

  11. Frontiers in Scanning Probe Microscopy

    30 Nov 2006 |

    From October 4- 6, 2006 the Birck Nanotechnology Center at Purdue University hosted a three day focused workshop on cutting edge SPM techniques that are under development throughout the world.The three day workshop featured thematically arranged invited talks. The workshop themes are broadly...

  12. Illinois Center for Cellular Mechanics: Discovery through the Computational Microscope

    09 Feb 2009 | | Contributor(s):: Klaus Schulten

    Computational MicroscopeAll-atom molecular dynamics simulations have become increasingly popular as a toolto investigate protein function and dynamics. However, researchers are usuallyconcerned about the short time scales covered by simulations, the apparentimpossibility to model large and...

  13. Illinois ECE 598EP Lecture 1 - Hot Chips: Atoms to Heat Sinks

    29 Jan 2009 | | Contributor(s):: Eric Pop

    IntroductionContent: The Big Picture Another CPU without a Heat Sink Thermal Management Methods Impact on People and Environment Packaging cost IBM S/390 refrigeration and processor packaging Intel Itanium and Pentium 4packaging Graphics Cards Under/Overclocking Environment A More Detailed Look...

  14. Illinois ECE 598EP Lecture 3.1 - Hot Chips: Electrons and Phonons

    11 Feb 2009 | | Contributor(s):: Eric Pop, Omar N Sobh

    Electrons and Phonons

  15. Illinois MatSE 280 Introduction to Engineering Materials, Lecture 1: Materials: Their Properties and Failures

    14 Aug 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    "Because without materials, there is no engineering"In this lecture we will discuss the following:- Units of Length- Six Major Classes of Materials- Periodic Table of Elements- Properties of Materials- Materials Science and Engineering in a Nutshell

  16. Illinois MatSE 280 Introduction to Engineering Materials, Lecture 2: Atomic Structure and Interatomic Bonding

    18 Aug 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    Refortify your chemistry - Atomic scale structuresGoals Define basic concepts: Filling of Atomic Energy Levels: Pauli Exclusion Principle Atomic Orbitals (s-, p-, d-, and f- type electrons) Types of Bonding between Atoms The Periodic Table (and solid state structures) Bond Energy Curves Describe...

  17. Illinois MATSE 280 Introduction to Engineering Materials, Lecture 3 Part 1: Structure of Metals and Ceramics

    19 Sep 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    Structures of Metals and CeramicsGoals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure Unit Cell Coordination Numbers Describe hard-sphere packing and identify cell symmetry Crystals density: the mass per volume (e.g. g/cm3) Linear...

  18. Illinois MATSE 280 Introduction to Engineering Materials, Lecture 3 Part 2: Structure of Ceramics

    21 Sep 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    Structure of CeramicsIssues to Address...Structures of ceramic materials: How do they differ from that of metals?Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure Unit Cell Coordination Numbers Describe hard-sphere packing and identify...

  19. Illinois MATSE 280 Introduction to Engineering Materials, Lecture 3 Part 3: Crystallographic Points, Directions, and Planes

    22 Sep 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    Crystallographic Points, Directions, and PlanesIssues to Address...How to define points, directions, planes, as well aslinear, planar, and volume densitiesDefine basic terms and give examples of each: Points (atomic positions) Vectors (defines a particular direction - plane normal) Miller...

  20. Illinois MATSE 280 Introduction to Engineering Materials, Lecture 3 Part 4: Structures via Diffusion

    28 Sep 2008 | | Contributor(s):: Duane Douglas Johnson, Omar N Sobh

    Structures via DiffractionGoals Define basic ideas of diffraction (using x-ray, electrons, or neutrons, which, although they are particles, they can behave as waves) and show how to determine: Crystal Structure Miller Index Planes and Determine the Structure Identify cell symmetry Learning...