Tags: materials science

All Categories (501-520 of 542)

  1. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them....

  2. Quantum Dot Lab

    12 Nov 2005 | | Contributor(s):: Prasad Sarangapani, James Fonseca, Daniel F Mejia, James Charles, Woody Gilbertson, Tarek Ahmed Ameen, Hesameddin Ilatikhameneh, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, Hong-Hyun Park, Tillmann Christoph Kubis, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck

    Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

  3. Designing Nanocomposite Thermoelectric Materials

    08 Nov 2005 | | Contributor(s):: Timothy D. Sands

    This tutorial reviews recent strategies for designing high-ZT nanostructured materials, including superlattices, embedded quantum dots, and nanowire composites. The tutorial highlights the challenges inherent to coupled electronic and thermal transport properties.

  4. Bandstructure in Nanoelectronics

    01 Nov 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  5. Vladimir I. Gavrilenko

    Prof. Vladimir I. Gavrilenko is at the Center for Materials Research and in the Department of Physics, of Norfolk State University, Norfolk, Virginia. He received his MS degree from T. Shevchenko...

    http://nanohub.org/members/10166

  6. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use...

  7. Wireless Integrated MicroSystems (WIMS): Coming Revolution in the Gathering of Information

    01 Sep 2005 |

    Wireless integrated microsystems promise to become pervasive during the coming decade in applications ranging from health care and environmental monitoring to homeland security. Merging low-power embedded computing, wireless interfaces, and wafer-level packaging with microelectromechanical...

  8. Laser Cooling of Solids

    06 Oct 2005 |

    Enhanced laser cooling of ion doped nanocrystalline powders (e.g., Yb3+: Y2O3) can be achieved by enhancing the anti-Stokes, off-resonance absorption, which is proportional to the three design-controlled factors, namely, dopant concentration, pumping field energy, and anti-Stokes transition...

  9. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | | Contributor(s):: David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

  10. Resonant Tunneling Diode Simulator

    10 Oct 2005 | | Contributor(s):: Michael McLennan

    Simulate 1D resonant tunneling devices and other heterostructures via ballistic quantum transport

  11. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | | Contributor(s):: Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information technologies, which were formerly entirely electronic, are increasingly enlisting light to communicate...

  12. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    28 Sep 2005 | | Contributor(s):: Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...

  13. Modeling and Simulation of Sub-Micron Thermal Transport

    26 Sep 2005 | | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. It is now accepted that...

  14. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | | Contributor(s):: Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding of the involved physics and the need to model realistically extended devices increases the...

  15. Quantum Dots

    21 Jul 2005 | | Contributor(s):: Gerhard Klimeck

    Quantum Dots are man-made artificial atoms that confine electrons to a small space. As such, they have atomic-like behavior and enable the study of quantum mechanical effects on a length scale that is around 100 times larger than the pure atomic scale. Quantum dots offer application...

  16. PN Junction Theory and Modeling

    14 Sep 2005 | | Contributor(s):: Dragica Vasileska

    This set of lecture notes is intended to help students learn the basics of PN junction theory and modeling.

  17. Novel Magnetic Materials for Biomolecular Diagnostics

    28 Jul 2005 | | Contributor(s):: Gil Lee, David Janes, Sugata Bhattacharya, Kyung Jae Jeong, ,

    Paramagnetic particles have emerged as important tools for cell sorting,protein separation, and single molecule measurements. The particles used inthese applications must meet the following requirements: uniform in size,highly paramagnetic, stable in physiological salt buffer, functionizable,and...

  18. Organic Electronics Part II: Electric Field Modulation

    28 Jul 2005 |

    A solid state platform has been designed and fabricated that allows characterization of candidate organic semiconductor materials used in organic field-effect transistors (OFET). A systematic experimental protocol has been outlined that allows the separation of contribution of contact resistance...

  19. Synthetic and Processing Strategies to New Molecular and Polymeric...

    28 Jul 2005 | | Contributor(s):: ,

    Recent achievements in the design and synthesis of new arene/heteroaromatic oligomers/molecules functionalized with a variety of phenacyl, alkylcarbonyl, and perfluoroalkylcarbonyl will be presented. These organic semiconductors exhibit low-lying LUMOs allowing efficient electron...

  20. Top-Metal/Molecular Monolayer Interactions and Final Device Performance

    28 Jul 2005 | | Contributor(s):: Curt A Richter

    The top-metal/molecular-monolayer interface is of critical importance in the formation of molecular electronic (ME) devices and test structures. I will discuss two experimental studies of ME devices in which the final device performance can be attributed to top-metal/molecule interactions:...