Please help us continue to improve nanoHUB operation and service by completing our survey - http://bit.ly/nH-survey14. Thank you - we appreciate your time. close

Support

Support Options

Submit a Support Ticket

 

Tags: molecular electronics

Description

In 1959, physicist Richard Feynman presented an amazing talk entitled There's Plenty of Room at the Bottom, in which he proposed making very small circuits out of molecules. More than forty years later, people are starting to realize his vision. Thanks to Scanning Tunneling Microscope (STM) probes and "self-assembly" fabrication techniques, it is now possible to connect electrodes to a molecule and measure its conductance. In 2004, Mark Hersam et al. reported the first experimental measurement of a molecular resonant tunneling device on silicon. This new field of Molecular Electronics may someday provide the means to miniaturize circuits beyond the limits of silicon, keeping Moore's Law in force for many years to come.

Learn more about molecular electronics from the resources on this site, listed below. More information on Molecular electronics can be found here.

Resources (21-40 of 146)

  1. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  2. ECE 453 Lecture 15c: Basis Functions 3

    04 Oct 2004 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture is available only in video format.

    http://nanohub.org/resources/604

  3. ECE 453 Lecture 15b: Basis Functions 2

    01 Oct 2004 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture is available only in video format.

    http://nanohub.org/resources/606

  4. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    08 Jan 2007 | Online Presentations | Contributor(s): Daniel Neuhauser

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is...

    http://nanohub.org/resources/2256

  5. Nanoscale Thermodynamics

    13 Dec 2006 | Online Presentations | Contributor(s): John Enriquez

    This is the fifth contribution from the students in the University of Texas at El Paso Molecular Electronics course given in the fall of 2006. This introduces nanothermodynamics, the study of...

    http://nanohub.org/resources/2106

  6. Chemical Modification of GaAs with TAT Peptide and Alkylthiol Self-Assembled Monolayers

    03 Aug 2006 | Online Presentations | Contributor(s): Hamsa Jaganathan

    The use of self-assembled monolayers (SAM) on semiconductors creates a basis for the design and creation of bioelectronics, such as biosensors. The interface between the surface and an organic...

    http://nanohub.org/resources/1670

  7. DNA Nanowires

    06 Aug 2006 | Online Presentations | Contributor(s): Margarita Shalaev

    DNA is a relatively inexpensive and ubiquitous material that can be used as a scaffold for constructing nanowires. Our research focuses on the manufacturing of DNA-templated, magnetic nanowires....

    http://nanohub.org/resources/1679

  8. Surface Analysis of Organic Monlayers Using FTIR and XPS

    02 Aug 2006 | Online Presentations | Contributor(s): Jamie Nipple, Michael Toole, David Janes

    Current research concerning self-assembled monolayers (SAM) focuses on the fabrication of microelectronics utilizing a semiconductor/molecule/metal junction. This study seeks to investigate...

    http://nanohub.org/resources/1655

  9. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 | Online Presentations | Contributor(s): Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions...

    http://nanohub.org/resources/1639

  10. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 | Online Presentations | Contributor(s): Troy Van Voorhis

    This talk will highlight several illustrative applications of constrained density functional theory (DFT) to electron transfer dynamics in electronic materials. The kinetics of these reactions...

    http://nanohub.org/resources/1566

  11. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | Online Presentations | Contributor(s): Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic...

    http://nanohub.org/resources/1487

  12. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    11 Apr 2006 | Online Presentations | Contributor(s): Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent...

    http://nanohub.org/resources/1214

  13. Tutorial on Using Micelle-MD

    05 Apr 2006 | Online Presentations | Contributor(s): Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a tutorial using Micelle-MD. This includes the main capabilities, computation procedure, with format of files generated, and the simulation setup, which includes the material models...

    http://nanohub.org/resources/1193

  14. Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces

    05 Apr 2006 | Online Presentations | Contributor(s): Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a talk on the mechanical properties of surfactant aggregates at water-solid interfaces using Micelle-MD. This includes silica indentations of micelles with comparison to experimental...

    http://nanohub.org/resources/1192

  15. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | Online Presentations | Contributor(s): Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies...

    http://nanohub.org/resources/1182

  16. Mark Ratner Interview on Nanotechnology

    23 Mar 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Krishna Madhavan

    Nanotechnology interview with Krishna Madhavan.

    http://nanohub.org/resources/1135

  17. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow...

    http://nanohub.org/resources/1018

  18. Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    Part II uses examples to illustrate how to build user-defined PDE systems in PROPHET.

    http://nanohub.org/resources/975

  19. Nano-Scale Device Simulations Using PROPHET-Part I: Basics

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    Part I covers the basics of PROPHET, including the set-up of simulation structures and parameters based on pre-defined PDE systems.

    http://nanohub.org/resources/974

  20. Nano-Scale Device Simulations Using PROPHET

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    These two lectures are aimed to give a practical guide to the use of a general device simulator (PROPHET) available on nanoHUB. PROPHET is a partial differential equation (PDE) solver that...

    http://nanohub.org/resources/973

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.